multihead_matmul_op.cc 17.6 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
P
Pei Yang 已提交
13 14 15
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
30 31 32 33 34 35 36 37 38 39 40 41
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

42
    float* weight_data = nullptr;
C
ceci3 已提交
43
    bool qkv2context_plugin_int8 = op_desc.HasAttr("qkv2context_plugin_int8");
44 45
    float in_scale = 0.;

46 47
    if (op_desc.HasAttr("Input_scale")) {
      in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale"));
48 49
      engine_->SetTensorDynamicRange(input, in_scale);
    }
50
    weight_data = engine_->GetWeightCPUData(weight_name, weight_t);
51

52
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t);
53 54 55 56 57
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

58
    // (hidden_in, 3, hidden_out)
59
    const auto& weight_dims = weight_t->dims();
60

61 62 63 64 65
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
66 67 68 69 70 71 72 73
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
74

75
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
76 77

    nvinfer1::ILayer* layer = nullptr;
78
    auto output_name = op_desc.Output("Out")[0];
79

80
    if (engine_->with_dynamic_shape()) {
81
      if (engine_->use_oss()) {
82 83 84 85
        if (engine_->precision() == AnalysisConfig::Precision::kFloat32) {
          PADDLE_THROW(platform::errors::Fatal(
              "use use_oss must be int8 or half, not float32."));
        }
86 87 88 89 90 91
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};
92 93
        if (engine_->with_interleaved()) {
          VLOG(4) << "fused multihead_matmul op: use_oss and with_interleaved";
94
          if (!op_desc.HasAttr("Input_scale")) {
95 96 97 98 99
            PADDLE_THROW(
                platform::errors::Fatal("use with_interleaved must be int8."));
          }
          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
100 101 102
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                          nv_ksize, weight, bias);
103 104 105 106
          fc_layer->setName(
              ("Multihead: Convolution/FullyConnected: (Output: " +
               output_name + ")")
                  .c_str());
107
          PADDLE_ENFORCE_EQ(
108
              op_desc.HasAttr("fc_out_threshold"), true,
109
              platform::errors::InvalidArgument(
110
                  "must have out_threshold in multihead layers in int8 mode"));
111
          float out_scale =
112
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
113
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
114 115 116 117
          if (qkv2context_plugin_int8) {
            dp_probs =
                BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
          }
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "3");
          assert(creator != nullptr);
          std::vector<nvinfer1::PluginField> fields{
              {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32,
               1},
              {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32,
               1}};
          if (qkv2context_plugin_int8) {
            fields.push_back({"dq_probs", &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32, 1});
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();
137

138 139 140
          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);
141

142 143 144 145 146 147 148 149 150 151
          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
          if (engine_->Has("ernie_pos_name")) {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->Get<std::string>("ernie_pos_name")));
          } else {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->network()
                    ->getInput(2)
                    ->getName()));  // cu_seqlens, eval_placeholder_2
152
          }
153 154 155 156 157 158 159 160 161 162 163
          auto max_seqlen_tensor =
              engine_->GetITensor(engine_->network()->getInput(3)->getName());
          engine_->SetTensorDynamicRange(max_seqlen_tensor, 1.0f);
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Shuffle,
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
164
          plugin_inputs.emplace_back(
165 166 167 168 169 170
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
          shuffle_layer->setName(
              ("Multihead: Shuffle: (Output: " + output_name + ")").c_str());
          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
171
        } else {
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
          int head_size = hidden_out / head_number;
          // [3, head_number, head_size, hidden_in] -> [head_number, 3,
          // head_size,
          // hidden_in]
          auto transpose_weight_v2 = [](const float* src, float* dst, int three,
                                        int head_number, int head_size,
                                        int hidden_in) {
            const int HH = head_size * hidden_in;
            for (int i = 0; i < three; ++i) {
              for (int n = 0; n < head_number; ++n) {
                for (int hh = 0; hh < HH; ++hh) {
                  dst[n * three * HH + i * HH + hh] =
                      src[i * head_number * HH + n * HH + hh];
                }
              }
            }
          };
          // [3, head_number, head_size] -> [head_number, 3, head_size]
          auto transpose_bias_v2 = [](const float* src, float* dst, int N,
                                      int H) {
            for (int i = 0; i < 3; ++i) {
              for (int n = 0; n < N; ++n) {
                for (int h = 0; h < H; ++h) {
                  dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
                }
              }
            }
          };
          memcpy(weight_data_tmp.data(), weight_data,
                 weight_t->numel() * sizeof(float));
          transpose_weight_v2(weight_data_tmp.data(), weight_data, three,
                              head_number, head_size, hidden_in);

          std::vector<float> bias_data_tmp;
          bias_data_tmp.reserve(bias_t->numel());
          memcpy(bias_data_tmp.data(), bias_data,
                 bias_t->numel() * sizeof(float));
          transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
                            head_size);

          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
214
          if (op_desc.HasAttr("Input_scale")) {
215 216 217 218 219 220 221 222
            nvinfer1::DimsHW nv_ksize(1, 1);
            fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                            nv_ksize, weight, bias);
          } else {
            fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
                                            weight, bias);
          }

223
          if (op_desc.HasAttr("fc_out_threshold")) {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            PADDLE_ENFORCE_EQ(op_desc.HasAttr("fc_out_threshold"), true,
                              platform::errors::InvalidArgument(
                                  "must have out threshold in multihead layers "
                                  "in int8 mode"));
            float out_scale =
                BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
            engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
            if (qkv2context_plugin_int8) {
              dp_probs =
                  BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
            }
          }

          auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");

          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "2");
          assert(creator != nullptr);
242 243 244 245
          int type = static_cast<int>(nvinfer1::DataType::kHALF);
          if (qkv2context_plugin_int8 &&
              (engine_->precision() == AnalysisConfig::Precision::kInt8)) {
            type = static_cast<int>(nvinfer1::DataType::kINT8);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
          }
          bool has_mask = true;
          int var_seqlen = 1;
          std::vector<nvinfer1::PluginField> fields{
              {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
              {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32,
               1},
              {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
              {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
              {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32,
               1}};
          if (qkv2context_plugin_int8) {
            fields.push_back({"dq_probs", &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32, 1});
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();

          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);

          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
          plugin_inputs.emplace_back(mask_tensor);
          if (engine_->Has("ernie_pos_name")) {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->Get<std::string>("ernie_pos_name")));
          } else {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->network()
                    ->getInput(2)
                    ->getName()));  // cu_seqlens, eval_placeholder_2
          }
          auto max_seqlen_tensor =
              engine_->GetITensor(engine_->network()->getInput(3)->getName());
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Shuffle,
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
          plugin_inputs.emplace_back(
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3

          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
301
        }
302
      } else {
303 304 305 306 307 308
        PADDLE_ENFORCE_EQ(
            input->getDimensions().nbDims, 3,
            platform::errors::InvalidArgument(
                "The Input dim of the MultiheadMatMul should be 3, "
                "but it's (%d) now.",
                input->getDimensions().nbDims));
309 310 311 312 313 314 315 316 317 318 319 320 321
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

322 323 324 325 326 327 328 329 330 331
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = 5;
        reshape_before_fc_dim.d[0] = 0;
        reshape_before_fc_dim.d[1] = 0;
        reshape_before_fc_dim.d[2] = 0;
        reshape_before_fc_dim.d[3] = 1;
        reshape_before_fc_dim.d[4] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
332
        if (op_desc.HasAttr("Input_scale")) {
333 334 335
          engine_->SetTensorDynamicRange(reshape_before_fc_layer->getOutput(0),
                                         in_scale);
        }
336 337 338 339 340 341
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_multihead_mamul(Output: " + output_name + ")")
                .c_str());

        // add layer fc
342
        nvinfer1::ILayer* fc_layer = nullptr;
343
        if (op_desc.HasAttr("Input_scale")) {
344 345 346 347 348 349 350 351 352 353
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Convolution, *reshape_before_fc_layer->getOutput(0), n,
              nv_ksize, weight.get(), bias.get());
        } else {
          fc_layer = TRT_ENGINE_ADD_LAYER(
              engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0),
              n, weight.get(), bias.get());
        }

354
        if (op_desc.HasAttr("fc_out_threshold")) {
355 356 357 358 359 360 361 362
          PADDLE_ENFORCE_EQ(
              op_desc.HasAttr("fc_out_threshold"), true,
              platform::errors::InvalidArgument(
                  "must have out threshold in multihead layers in int8 mode"));
          float out_scale =
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
        }
363 364 365 366 367 368
        fc_layer->setName(
            ("multihead_mamul_fc(Output: " + output_name + ")").c_str());

        // no need to add shuffle after fc, just change it in
        // QkvToContextPluginDynamic

369
        // add qkv to context
370
        int head_size = hidden_out / head_number;
371 372 373
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
374
        plugin_inputs.push_back(fc_layer->getOutput(0));
375
        plugin_inputs.push_back(input_bias_qk);
376 377
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
378

379 380
        if (engine_->precision() == AnalysisConfig::Precision::kInt8) {
          with_fp16 = true;
381
        }
382
        plugin::DynamicPluginTensorRT* plugin =
383
            new plugin::QkvToContextPluginDynamic(hidden_in, head_number,
384
                                                  head_size, scale, with_fp16);
385
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin);
386
      }
387 388 389 390 391 392 393 394 395
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
P
Pei Yang 已提交
396 397 398 399 400 401 402 403
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);