multihead_matmul_op.cc 13.0 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
P
Pei Yang 已提交
13 14 15
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
26
#if IS_TRT_VERSION_GE(6000)
P
Pei Yang 已提交
27 28 29 30
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
31 32 33 34 35 36 37 38 39 40 41 42
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

43 44
    float* weight_data = nullptr;
    bool enable_int8 = op_desc.HasAttr("enable_int8");
45 46
    bool qkv2context_plugin_int8 =
        BOOST_GET_CONST(bool, op_desc.GetAttr("qkv2context_plugin_int8"));
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    float in_scale = 0.;

    if (enable_int8) {
      PADDLE_ENFORCE_EQ(
          op_desc.HasAttr("Input_scale"), true,
          platform::errors::InvalidArgument(
              "must have input scale in multihead layers in int8 mode"));
      in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
      auto weight_scale =
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
      weight_data =
          engine_->GetWeightCPUData(weight_name, weight_t, true, weight_scale);
      engine_->SetTensorDynamicRange(input, in_scale);
    } else {
      weight_data = engine_->GetWeightCPUData(weight_name, weight_t, false);
    }

64 65 66 67 68 69
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false);
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

70
    // (hidden_in, 3, hidden_out)
71 72
    auto weight_dims = weight_t->dims();

73 74 75 76 77
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
78 79 80 81 82 83 84 85
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
86

87
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
88 89

    nvinfer1::ILayer* layer = nullptr;
90
    auto output_name = op_desc.Output("Out")[0];
91

92
    if (engine_->with_dynamic_shape()) {
93
      if (engine_->use_oss()) {
94 95 96 97 98 99 100 101 102 103 104 105
        int head_size = hidden_out / head_number;
        // [3, head_number, head_size, hidden_in] -> [head_number, 3, head_size,
        // hidden_in]
        auto transpose_weight_v2 = [](const float* src, float* dst, int three,
                                      int head_number, int head_size,
                                      int hidden_in) {
          const int HH = head_size * hidden_in;
          for (int i = 0; i < three; ++i) {
            for (int n = 0; n < head_number; ++n) {
              for (int hh = 0; hh < HH; ++hh) {
                dst[n * three * HH + i * HH + hh] =
                    src[i * head_number * HH + n * HH + hh];
106 107 108 109
              }
            }
          }
        };
110
        // [3, head_number, head_size] -> [head_number, 3, head_size]
111 112
        auto transpose_bias_v2 = [](const float* src, float* dst, int N,
                                    int H) {
113 114 115 116 117 118 119 120 121 122
          for (int i = 0; i < 3; ++i) {
            for (int n = 0; n < N; ++n) {
              for (int h = 0; h < H; ++h) {
                dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
              }
            }
          }
        };
        memcpy(weight_data_tmp.data(), weight_data,
               weight_t->numel() * sizeof(float));
123 124
        transpose_weight_v2(weight_data_tmp.data(), weight_data, three,
                            head_number, head_size, hidden_in);
125 126 127 128 129 130
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};

        std::vector<float> bias_data_tmp;
        bias_data_tmp.reserve(bias_t->numel());
131 132
        memcpy(bias_data_tmp.data(), bias_data,
               bias_t->numel() * sizeof(float));
133 134 135 136 137 138
        transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
                          head_size);
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};

139 140 141 142 143 144 145 146 147 148 149 150 151
        nvinfer1::ILayer* fc_layer = nullptr;
        float dp_probs = 1.0 / 127.0;
        if (enable_int8) {
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                          nv_ksize, weight, bias);
        } else {
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
                                          weight, bias);
        }

        if (enable_int8) {
          PADDLE_ENFORCE_EQ(
152
              op_desc.HasAttr("fc_out_threshold"), true,
153 154 155
              platform::errors::InvalidArgument(
                  "must have out threshold in multihead layers in int8 mode"));
          float out_scale =
156
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
157
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
158 159 160 161
          if (qkv2context_plugin_int8) {
            dp_probs =
                BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
          }
162
        }
163 164 165 166 167 168 169 170 171

        auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");

        auto creator = GetPluginRegistry()->getPluginCreator(
            "CustomQKVToContextPluginDynamic", "2");
        assert(creator != nullptr);
        int type = static_cast<int>((engine_->WithFp16() == 1)
                                        ? nvinfer1::DataType::kHALF
                                        : nvinfer1::DataType::kFLOAT);
172 173
        if (enable_int8) {
          type = static_cast<int>(nvinfer1::DataType::kHALF);
174 175 176
          if (qkv2context_plugin_int8) {
            type = static_cast<int>(nvinfer1::DataType::kINT8);
          }
177
        }
178 179
        bool has_mask = true;
        int var_seqlen = 1;
180
        std::vector<nvinfer1::PluginField> fields{
181
            {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
182
            {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1},
183 184
            {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
            {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
185 186 187 188 189 190 191 192
            { "var_seqlen",
              &var_seqlen,
              nvinfer1::PluginFieldType::kINT32,
              1 }};
        if (qkv2context_plugin_int8) {
          fields.push_back(
              {"dq_probs", &dp_probs, nvinfer1::PluginFieldType::kFLOAT32, 1});
        }
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        nvinfer1::PluginFieldCollection* plugin_collection =
            static_cast<nvinfer1::PluginFieldCollection*>(
                malloc(sizeof(*plugin_collection) +
                       fields.size() *
                           sizeof(nvinfer1::PluginField)));  // remember to free
        plugin_collection->nbFields = static_cast<int>(fields.size());
        plugin_collection->fields = fields.data();

        auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                            plugin_collection);
        free(plugin_collection);

        std::vector<nvinfer1::ITensor*> plugin_inputs;
        plugin_inputs.emplace_back(fc_layer->getOutput(0));
        plugin_inputs.emplace_back(mask_tensor);
208 209 210 211 212 213 214 215 216
        if (engine_->Has("ernie_pos_name")) {
          plugin_inputs.emplace_back(
              engine_->GetITensor(engine_->Get<std::string>("ernie_pos_name")));
        } else {
          plugin_inputs.emplace_back(engine_->GetITensor(
              engine_->network()
                  ->getInput(2)
                  ->getName()));  // cu_seqlens, eval_placeholder_2
        }
217 218
        auto max_seqlen_tensor =
            engine_->GetITensor(engine_->network()->getInput(3)->getName());
219
        auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
220 221
            engine_, Shuffle,
            *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
222 223 224 225
        nvinfer1::Dims shape_dim;
        shape_dim.nbDims = 1;
        shape_dim.d[0] = -1;
        shuffle_layer->setReshapeDimensions(shape_dim);
226 227
        plugin_inputs.emplace_back(
            shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
228 229 230 231 232

        auto plugin_layer = engine_->network()->addPluginV2(
            plugin_inputs.data(), plugin_inputs.size(), *plugin);
        layer = plugin_layer;
      } else {
233 234 235 236 237 238
        PADDLE_ENFORCE_EQ(
            input->getDimensions().nbDims, 3,
            platform::errors::InvalidArgument(
                "The Input dim of the MultiheadMatMul should be 3, "
                "but it's (%d) now.",
                input->getDimensions().nbDims));
239 240 241 242 243 244 245 246 247 248 249 250 251
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = 5;
        reshape_before_fc_dim.d[0] = 0;
        reshape_before_fc_dim.d[1] = 0;
        reshape_before_fc_dim.d[2] = 0;
        reshape_before_fc_dim.d[3] = 1;
        reshape_before_fc_dim.d[4] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_multihead_mamul(Output: " + output_name + ")")
                .c_str());

        // add layer fc
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n,
            weight.get(), bias.get());
        fc_layer->setName(
            ("multihead_mamul_fc(Output: " + output_name + ")").c_str());

        // no need to add shuffle after fc, just change it in
        // QkvToContextPluginDynamic

277
        // add qkv to context
278
        int head_size = hidden_out / head_number;
279 280 281
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
282
        plugin_inputs.push_back(fc_layer->getOutput(0));
283
        plugin_inputs.push_back(input_bias_qk);
284 285
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
286
        plugin::DynamicPluginTensorRT* plugin =
287
            new plugin::QkvToContextPluginDynamic(hidden_in, head_number,
288
                                                  head_size, scale, with_fp16);
289
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin);
290
      }
291 292 293 294 295 296 297 298 299 300 301 302 303 304
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "You are running the TRT Dynamic Shape mode, need to confirm that "
        "your TRT version is no less than 6.0"));
#endif
P
Pei Yang 已提交
305 306 307 308 309 310 311 312
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);