multihead_matmul_op.cc 17.7 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
P
Pei Yang 已提交
13 14 15
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
30 31 32 33 34 35 36 37 38 39 40 41
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

42 43
    float* weight_data = nullptr;
    bool enable_int8 = op_desc.HasAttr("enable_int8");
C
ceci3 已提交
44
    bool qkv2context_plugin_int8 = op_desc.HasAttr("qkv2context_plugin_int8");
45 46 47 48 49 50 51 52 53 54 55 56 57
    float in_scale = 0.;

    if (enable_int8) {
      in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
      auto weight_scale =
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
      weight_data =
          engine_->GetWeightCPUData(weight_name, weight_t, true, weight_scale);
      engine_->SetTensorDynamicRange(input, in_scale);
    } else {
      weight_data = engine_->GetWeightCPUData(weight_name, weight_t, false);
    }

58 59 60 61 62 63
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false);
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

64
    // (hidden_in, 3, hidden_out)
65 66
    auto weight_dims = weight_t->dims();

67 68 69 70 71
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
72 73 74 75 76 77 78 79
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
80

81
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
82 83

    nvinfer1::ILayer* layer = nullptr;
84
    auto output_name = op_desc.Output("Out")[0];
85

86
    if (engine_->with_dynamic_shape()) {
87 88 89 90 91 92 93
      if (engine_->use_oss()) {
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};
94 95 96 97 98 99 100 101
        if (engine_->with_interleaved()) {
          VLOG(4) << "fused multihead_matmul op: use_oss and with_interleaved";
          if (!enable_int8) {
            PADDLE_THROW(
                platform::errors::Fatal("use with_interleaved must be int8."));
          }
          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
102 103 104
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                          nv_ksize, weight, bias);
105 106 107 108
          fc_layer->setName(
              ("Multihead: Convolution/FullyConnected: (Output: " +
               output_name + ")")
                  .c_str());
109
          PADDLE_ENFORCE_EQ(
110
              op_desc.HasAttr("fc_out_threshold"), true,
111
              platform::errors::InvalidArgument(
112
                  "must have out_threshold in multihead layers in int8 mode"));
113
          float out_scale =
114
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
115
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
116 117 118 119
          if (qkv2context_plugin_int8) {
            dp_probs =
                BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
          }
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "3");
          assert(creator != nullptr);
          std::vector<nvinfer1::PluginField> fields{
              {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32,
               1},
              {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32,
               1}};
          if (qkv2context_plugin_int8) {
            fields.push_back({"dq_probs", &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32, 1});
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();
139

140 141 142
          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);
143

144 145 146 147 148 149 150 151 152 153
          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
          if (engine_->Has("ernie_pos_name")) {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->Get<std::string>("ernie_pos_name")));
          } else {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->network()
                    ->getInput(2)
                    ->getName()));  // cu_seqlens, eval_placeholder_2
154
          }
155 156 157 158 159 160 161 162 163 164 165
          auto max_seqlen_tensor =
              engine_->GetITensor(engine_->network()->getInput(3)->getName());
          engine_->SetTensorDynamicRange(max_seqlen_tensor, 1.0f);
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Shuffle,
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
166
          plugin_inputs.emplace_back(
167 168 169 170 171 172
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
          shuffle_layer->setName(
              ("Multihead: Shuffle: (Output: " + output_name + ")").c_str());
          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
173
        } else {
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
          int head_size = hidden_out / head_number;
          // [3, head_number, head_size, hidden_in] -> [head_number, 3,
          // head_size,
          // hidden_in]
          auto transpose_weight_v2 = [](const float* src, float* dst, int three,
                                        int head_number, int head_size,
                                        int hidden_in) {
            const int HH = head_size * hidden_in;
            for (int i = 0; i < three; ++i) {
              for (int n = 0; n < head_number; ++n) {
                for (int hh = 0; hh < HH; ++hh) {
                  dst[n * three * HH + i * HH + hh] =
                      src[i * head_number * HH + n * HH + hh];
                }
              }
            }
          };
          // [3, head_number, head_size] -> [head_number, 3, head_size]
          auto transpose_bias_v2 = [](const float* src, float* dst, int N,
                                      int H) {
            for (int i = 0; i < 3; ++i) {
              for (int n = 0; n < N; ++n) {
                for (int h = 0; h < H; ++h) {
                  dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
                }
              }
            }
          };
          memcpy(weight_data_tmp.data(), weight_data,
                 weight_t->numel() * sizeof(float));
          transpose_weight_v2(weight_data_tmp.data(), weight_data, three,
                              head_number, head_size, hidden_in);

          std::vector<float> bias_data_tmp;
          bias_data_tmp.reserve(bias_t->numel());
          memcpy(bias_data_tmp.data(), bias_data,
                 bias_t->numel() * sizeof(float));
          transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
                            head_size);

          nvinfer1::ILayer* fc_layer = nullptr;
          float dp_probs = 1.0 / 127.0;
          if (enable_int8) {
            nvinfer1::DimsHW nv_ksize(1, 1);
            fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                            nv_ksize, weight, bias);
          } else {
            fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
                                            weight, bias);
          }

          if (enable_int8) {
            PADDLE_ENFORCE_EQ(op_desc.HasAttr("fc_out_threshold"), true,
                              platform::errors::InvalidArgument(
                                  "must have out threshold in multihead layers "
                                  "in int8 mode"));
            float out_scale =
                BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
            engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
            if (qkv2context_plugin_int8) {
              dp_probs =
                  BOOST_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0;
            }
          }

          auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");

          auto creator = GetPluginRegistry()->getPluginCreator(
              "CustomQKVToContextPluginDynamic", "2");
          assert(creator != nullptr);
          int type = static_cast<int>((engine_->WithFp16() == 1)
                                          ? nvinfer1::DataType::kHALF
                                          : nvinfer1::DataType::kFLOAT);
          if (enable_int8) {
            type = static_cast<int>(nvinfer1::DataType::kHALF);
            if (qkv2context_plugin_int8) {
              type = static_cast<int>(nvinfer1::DataType::kINT8);
            }
          }
          bool has_mask = true;
          int var_seqlen = 1;
          std::vector<nvinfer1::PluginField> fields{
              {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
              {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32,
               1},
              {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
              {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
              {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32,
               1}};
          if (qkv2context_plugin_int8) {
            fields.push_back({"dq_probs", &dp_probs,
                              nvinfer1::PluginFieldType::kFLOAT32, 1});
          }
          nvinfer1::PluginFieldCollection* plugin_collection =
              static_cast<nvinfer1::PluginFieldCollection*>(malloc(
                  sizeof(*plugin_collection) +
                  fields.size() *
                      sizeof(nvinfer1::PluginField)));  // remember to free
          plugin_collection->nbFields = static_cast<int>(fields.size());
          plugin_collection->fields = fields.data();

          auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                              plugin_collection);
          free(plugin_collection);

          std::vector<nvinfer1::ITensor*> plugin_inputs;
          plugin_inputs.emplace_back(fc_layer->getOutput(0));
          plugin_inputs.emplace_back(mask_tensor);
          if (engine_->Has("ernie_pos_name")) {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->Get<std::string>("ernie_pos_name")));
          } else {
            plugin_inputs.emplace_back(engine_->GetITensor(
                engine_->network()
                    ->getInput(2)
                    ->getName()));  // cu_seqlens, eval_placeholder_2
          }
          auto max_seqlen_tensor =
              engine_->GetITensor(engine_->network()->getInput(3)->getName());
          auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Shuffle,
              *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
          nvinfer1::Dims shape_dim;
          shape_dim.nbDims = 1;
          shape_dim.d[0] = -1;
          shuffle_layer->setReshapeDimensions(shape_dim);
          engine_->SetTensorDynamicRange(shuffle_layer->getOutput(0), 1.0f);
          plugin_inputs.emplace_back(
              shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3

          auto plugin_layer = engine_->network()->addPluginV2(
              plugin_inputs.data(), plugin_inputs.size(), *plugin);
          layer = plugin_layer;
307
        }
308
      } else {
309 310 311 312 313 314
        PADDLE_ENFORCE_EQ(
            input->getDimensions().nbDims, 3,
            platform::errors::InvalidArgument(
                "The Input dim of the MultiheadMatMul should be 3, "
                "but it's (%d) now.",
                input->getDimensions().nbDims));
315 316 317 318 319 320 321 322 323 324 325 326 327
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

328 329 330 331 332 333 334 335 336 337
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = 5;
        reshape_before_fc_dim.d[0] = 0;
        reshape_before_fc_dim.d[1] = 0;
        reshape_before_fc_dim.d[2] = 0;
        reshape_before_fc_dim.d[3] = 1;
        reshape_before_fc_dim.d[4] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
338 339 340 341
        if (enable_int8) {
          engine_->SetTensorDynamicRange(reshape_before_fc_layer->getOutput(0),
                                         in_scale);
        }
342 343 344 345 346 347
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_multihead_mamul(Output: " + output_name + ")")
                .c_str());

        // add layer fc
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        nvinfer1::ILayer* fc_layer = nullptr;
        if (enable_int8) {
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Convolution, *reshape_before_fc_layer->getOutput(0), n,
              nv_ksize, weight.get(), bias.get());
        } else {
          fc_layer = TRT_ENGINE_ADD_LAYER(
              engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0),
              n, weight.get(), bias.get());
        }

        if (enable_int8) {
          PADDLE_ENFORCE_EQ(
              op_desc.HasAttr("fc_out_threshold"), true,
              platform::errors::InvalidArgument(
                  "must have out threshold in multihead layers in int8 mode"));
          float out_scale =
              BOOST_GET_CONST(float, op_desc.GetAttr("fc_out_threshold"));
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
        }
369 370 371 372 373 374
        fc_layer->setName(
            ("multihead_mamul_fc(Output: " + output_name + ")").c_str());

        // no need to add shuffle after fc, just change it in
        // QkvToContextPluginDynamic

375
        // add qkv to context
376
        int head_size = hidden_out / head_number;
377 378 379
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
380
        plugin_inputs.push_back(fc_layer->getOutput(0));
381
        plugin_inputs.push_back(input_bias_qk);
382 383
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
384 385 386 387

        if (enable_int8) {
          with_fp16 = 1;
        }
388
        plugin::DynamicPluginTensorRT* plugin =
389
            new plugin::QkvToContextPluginDynamic(hidden_in, head_number,
390
                                                  head_size, scale, with_fp16);
391
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin);
392
      }
393 394 395 396 397 398 399 400 401
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
P
Pei Yang 已提交
402 403 404 405 406 407 408 409
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);