multihead_matmul_op.cc 9.7 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
26
#if IS_TRT_VERSION_GE(6000)
P
Pei Yang 已提交
27 28 29 30
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    // Shouble be a 5 dims tensor.
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

    float* weight_data =
        engine_->GetWeightCPUData(weight_name, weight_t, false);
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false);
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

52
    // (hidden_in, 3, hidden_out)
53 54
    auto weight_dims = weight_t->dims();

55 56 57 58 59
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
60 61 62 63 64 65 66 67
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
68

69
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
70 71

    nvinfer1::ILayer* layer = nullptr;
72

73
    if (engine_->with_dynamic_shape()) {
74
      if (engine_->use_oss()) {
75 76 77 78 79 80 81 82 83 84 85 86
        int head_size = hidden_out / head_number;
        // [3, head_number, head_size, hidden_in] -> [head_number, 3, head_size,
        // hidden_in]
        auto transpose_weight_v2 = [](const float* src, float* dst, int three,
                                      int head_number, int head_size,
                                      int hidden_in) {
          const int HH = head_size * hidden_in;
          for (int i = 0; i < three; ++i) {
            for (int n = 0; n < head_number; ++n) {
              for (int hh = 0; hh < HH; ++hh) {
                dst[n * three * HH + i * HH + hh] =
                    src[i * head_number * HH + n * HH + hh];
87 88 89 90
              }
            }
          }
        };
91
        // [3, head_number, head_size] -> [head_number, 3, head_size]
92 93
        auto transpose_bias_v2 = [](const float* src, float* dst, int N,
                                    int H) {
94 95 96 97 98 99 100 101 102 103
          for (int i = 0; i < 3; ++i) {
            for (int n = 0; n < N; ++n) {
              for (int h = 0; h < H; ++h) {
                dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
              }
            }
          }
        };
        memcpy(weight_data_tmp.data(), weight_data,
               weight_t->numel() * sizeof(float));
104 105
        transpose_weight_v2(weight_data_tmp.data(), weight_data, three,
                            head_number, head_size, hidden_in);
106 107 108 109 110 111
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};

        std::vector<float> bias_data_tmp;
        bias_data_tmp.reserve(bias_t->numel());
112 113
        memcpy(bias_data_tmp.data(), bias_data,
               bias_t->numel() * sizeof(float));
114 115 116 117 118 119
        transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
                          head_size);
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};

120 121
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input,
                                              n, weight, bias);
122 123 124 125 126 127 128 129 130 131 132 133 134

        auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");

        auto creator = GetPluginRegistry()->getPluginCreator(
            "CustomQKVToContextPluginDynamic", "2");
        assert(creator != nullptr);
        int type = static_cast<int>((engine_->WithFp16() == 1)
                                        ? nvinfer1::DataType::kHALF
                                        : nvinfer1::DataType::kFLOAT);
        bool has_mask = true;
        int var_seqlen = 1;
        const std::vector<nvinfer1::PluginField> fields{
            {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
135
            {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1},
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
            {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
            {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1},
        };
        nvinfer1::PluginFieldCollection* plugin_collection =
            static_cast<nvinfer1::PluginFieldCollection*>(
                malloc(sizeof(*plugin_collection) +
                       fields.size() *
                           sizeof(nvinfer1::PluginField)));  // remember to free
        plugin_collection->nbFields = static_cast<int>(fields.size());
        plugin_collection->fields = fields.data();

        auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                            plugin_collection);
        free(plugin_collection);

        std::vector<nvinfer1::ITensor*> plugin_inputs;
        plugin_inputs.emplace_back(fc_layer->getOutput(0));
        plugin_inputs.emplace_back(mask_tensor);
        plugin_inputs.emplace_back(engine_->GetITensor(
            engine_->network()->getInput(2)->getName()));  // cu_seqlens,
                                                           // eval_placeholder_2
158 159
        auto max_seqlen_tensor =
            engine_->GetITensor(engine_->network()->getInput(3)->getName());
160
        auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
161 162
            engine_, Shuffle,
            *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
163 164 165 166
        nvinfer1::Dims shape_dim;
        shape_dim.nbDims = 1;
        shape_dim.d[0] = -1;
        shuffle_layer->setReshapeDimensions(shape_dim);
167 168
        plugin_inputs.emplace_back(
            shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        auto plugin_layer = engine_->network()->addPluginV2(
            plugin_inputs.data(), plugin_inputs.size(), *plugin);
        layer = plugin_layer;
      } else {
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

187 188
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input,
                                              n, weight.get(), bias.get());
189 190
        auto* fc_out = fc_layer->getOutput(0);
        // add qkv to context
191
        int head_size = hidden_out / head_number;
192 193 194 195 196
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
        plugin_inputs.push_back(fc_out);
        plugin_inputs.push_back(input_bias_qk);
197 198
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
199
        plugin::DynamicPluginTensorRT* plugin =
200
            new plugin::QkvToContextPluginDynamic(hidden_in, head_number,
201
                                                  head_size, scale, with_fp16);
202 203
        layer = engine_->AddPluginV2(plugin_inputs.data(), 2, plugin);
      }
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "You are running the TRT Dynamic Shape mode, need to confirm that "
        "your TRT version is no less than 6.0"));
#endif
P
Pei Yang 已提交
219 220 221 222 223 224 225 226
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);