math.py 81.2 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28
from .manipulation import _print_warning_in_static_mode
29 30 31

# TODO: define math functions
# yapf: disable
32 33 34 35 36
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
J
joejiong 已提交
37
from ..fluid.layers import tan    #DEFINE_ALIAS
38 39
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
40 41 42 43 44 45 46
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
47 48 49 50
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71
        'abs',
        'acos',
S
syyxsxx 已提交
72 73
        'all',
        'any',
74 75 76 77
        'asin',
        'atan',
        'ceil',
        'cos',
78
        'cosh',
79 80 81
        'cumsum',
        'exp',
        'floor',
82
        'increment',
83
        'log',
J
joejiong 已提交
84
        'log2',
J
joejiong 已提交
85
        'log10',
86
        'logsumexp',
87
        'mul',
88
        'multiplex',
89
        'pow',
90
        'prod',
91 92 93 94 95 96
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
97
        'sinh',
98 99 100 101 102
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
103
        'tanh_',
S
Steffy-zxf 已提交
104
        'add_n',
105
        'max',
106
        'maximum',
107
        'min',
108
        'minimum',
109
        'mm',
110 111 112 113 114
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
115
        'multiply',
116
        'add',
117
        'subtract',
118 119
        'atan',
        'logsumexp',
120
        'inverse',
121 122 123
        'log1p',
        'erf',
        'addmm',
Y
Yang Zhang 已提交
124
        'clip',
L
Li Fuchen 已提交
125
        'trace',
J
Jack Zhou 已提交
126 127 128
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
129
        'isnan',
130 131
        'broadcast_shape',
        'conj'
132 133 134
]
# yapf: enable.

135 136 137 138 139 140 141 142 143 144 145 146 147
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

148
def pow(x, y, name=None):
149
    """
150
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
151

152 153
    .. math::
        out = x^{y} 
154

155 156
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
157 158


159 160
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
161
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
162 163
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
164
    Returns:
165
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
166 167 168

    Examples:

169
        ..  code-block:: python
170 171 172

            import paddle

173 174 175 176 177 178 179 180 181 182 183 184
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

185
            # example 2: y is a Tensor
186
            y = paddle.to_tensor([2], dtype='float32')
187
            res = paddle.pow(x, y)
188 189 190
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
191 192

    """
193
    # in dynamic graph mode
W
WuHaobo 已提交
194
    if in_dygraph_mode():
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
215
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
216 217 218
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
219 220 221



222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

242 243
    out = helper.kwargs.get('out', None)

244 245 246 247 248 249 250 251 252 253 254 255
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
256 257 258 259 260 261

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
262 263 264 265 266 267 268 269 270 271 272

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
273
def add(x, y, name=None):
274
    """
275
    Examples:
276 277 278 279

    ..  code-block:: python

        import paddle
280 281
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
282
        z = paddle.add(x, y)
283
        print(z)  # [3., 8., 6. ]
284 285 286 287 288 289

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
290
            x, y, axis=axis, op_name=op_type)
291 292 293 294

    return _elementwise_op(LayerHelper(op_type, **locals()))


295 296
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
297
    Substract two tensors element-wise. The equation is:
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


356
def divide(x, y, name=None):
357
    """
358
    Divide two tensors element-wise. The equation is:
359

360 361
    .. math::
        out = x / y
362

363 364
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
365

366 367 368 369
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
370

371
    Returns:
372
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
373

374
    Examples:
375

376
        ..  code-block:: python
377

378
            import paddle
379

380 381
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
382
            z = paddle.divide(x, y)
383
            print(z)  # [2., 0.6, 2.]
384

385 386 387 388 389 390 391
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
392

393
    return _elementwise_op(LayerHelper(op_type, **locals()))
394 395


396 397 398
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
399

400 401
    .. math::
        out = x // y
402

403 404
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
405

406 407 408 409
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
410

411 412
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
413

414
    Examples:
415

416
        ..  code-block:: python
417

418
            import paddle
419

420 421
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
422
            z = paddle.floor_divide(x, y)
423
            print(z)  # [2, 0, 2, 2]
424

425 426 427 428 429 430
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
431

432
    return _elementwise_op(LayerHelper(op_type, **locals()))
433 434


435
def remainder(x, y, name=None):
436
    r"""
437 438 439
    Mod two tensors element-wise. The equation is:

    .. math::
440

441 442 443
        out = x \% y

    **Note**:
444
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
445 446

    Args:
W
WangXi 已提交
447 448
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
449 450 451
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
452
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
453 454 455 456 457 458 459

    Examples:

        ..  code-block:: python

            import paddle

460 461
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
462
            z = paddle.remainder(x, y)
W
WangXi 已提交
463
            print(z)  # [0, 3, 2, 1]
464 465 466

    """
    op_type = 'elementwise_mod'
467 468 469
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
470
            x, y, axis=axis, op_name=op_type)
471 472 473 474

    return _elementwise_op(LayerHelper(op_type, **locals()))


475 476 477 478
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


479
def multiply(x, y, name=None):
480
    """
481
    multiply two tensors element-wise. The equation is:
482

483 484
    .. math::
        out = x * y
485

486 487
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
488

489 490 491 492
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
493

494
    Returns:
495
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
496

497 498 499 500 501 502
    Examples:

        ..  code-block:: python

            import paddle

503 504
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
505
            res = paddle.multiply(x, y)
506
            print(res) # [[5, 12], [21, 32]]
507

508
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
509 510 511
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
512 513 514 515

    """
    op_type = 'elementwise_mul'
    act = None
516
    axis = -1
517

518 519 520 521
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

522 523 524 525 526
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

527 528
    return _elementwise_op(LayerHelper(op_type, **locals()))

529
def maximum(x, y, name=None):
530
    """
W
Wei Shengyu 已提交
531
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
532

533 534
    .. math::
        out = max(x, y)
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
579 580
    """
    op_type = 'elementwise_max'
581
    axis = -1
582 583 584 585 586 587
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

588
def minimum(x, y, name=None):
589
    """
W
Wei Shengyu 已提交
590
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
591

592 593
    .. math::
        out = min(x, y)
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
638 639
    """
    op_type = 'elementwise_min'
640
    axis = -1
641 642 643 644 645
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
646

647 648
for func in [
        add,
649
        multiply
650
]:
651
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
652 653
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
654 655 656 657 658 659 660
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
661 662
        op_proto,
        additional_args_lines=additional_args_lines,
663
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
664
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
665
        }) + """\n""" + str(func.__doc__)
666

Y
Yang Zhang 已提交
667

668
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
669 670 671 672
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
673 674 675
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
676
            Tensor with a single element, otherwise must be in the
677 678 679 680 681 682 683
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
684
            value is False.
685
        name (str, optional): The default value is None. Normally there is no need for
686 687 688
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
689 690
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
691 692

    Raises:
693 694
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
695
        TypeError: The type of :attr:`axis` must be int, list or tuple.
696

697 698 699 700
    Examples:
        .. code-block:: python

            import paddle
701

702
            # x is a Tensor with following elements:
703 704 705
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
706 707
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
708
            out1 = paddle.sum(x)  # [3.5]
709 710 711
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
712

713
            # y is a Tensor with shape [2, 2, 2] and elements as below:
714 715 716
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
717 718
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
719 720
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
721
    """
722 723 724 725 726 727 728 729 730 731 732
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

733
    attrs = {
734 735 736
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
737 738 739 740
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
741 742
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
743
                attrs.update({
744
                    'in_dtype': x.dtype,
745 746 747 748 749
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
750
        axis = axis if axis != None and axis != [] else [0]
751
        if dtype_flag:
752 753 754
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
755 756
                                       convert_np_dtype_to_dtype_(dtype))
        else:
757 758
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
759
    check_variable_and_dtype(
760
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
761 762 763 764 765 766 767 768 769 770 771

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

772 773
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

774 775 776 777 778
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
779
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
780 781
    helper.append_op(
        type='reduce_sum',
782
        inputs={'X': x},
783 784 785
        outputs={'Out': out},
        attrs=attrs)
    return out
786

787

788
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
789
def add_n(inputs, name=None):
790
    """
S
Steffy-zxf 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
826 827

    Args:
S
Steffy-zxf 已提交
828 829
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
830 831 832 833
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
834
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
835 836 837 838 839 840

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
841 842 843 844 845
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
846
    """
S
Steffy-zxf 已提交
847 848 849 850
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
851

S
Steffy-zxf 已提交
852 853
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
854 855 856 857
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
858
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
859 860
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
861
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
862 863


864 865 866 867 868 869 870 871 872 873 874
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
875
def mm(input, mat2, name=None):
876
    """
S
swtkiwi 已提交
877

878 879 880 881 882 883 884 885 886 887
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

888 889
    This op does not support broadcasting. See paddle.matmul.

890
    Args:
891
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
892
        mat2 (Tensor): The input tensor which is a Tensor.
893 894 895 896
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
897
        Tensor: The product Tensor.
898 899 900 901 902

    Examples:
        .. code-block:: python

            import paddle
903 904 905 906 907 908 909 910
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
911

912 913
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
914
        out = _varbase_creator(dtype=input.dtype)
915 916
        core.ops.matmul(input, mat2, out)
        return out
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
954
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
955 956 957 958
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
959

960

Y
yaoxuefeng 已提交
961
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
962 963 964 965 966 967 968 969 970 971 972 973 974
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
975 976 977
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
978
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
979
        alpha (float): Coefficient of $x*y$.
980 981 982
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
983
        Tensor: The output Tensor of addmm op.
984 985 986

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
987
            
988 989
            import paddle

Y
yaoxuefeng 已提交
990 991 992
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
993

Y
yaoxuefeng 已提交
994
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
995

N
Noel 已提交
996
            print(out)
997 998 999
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1020 1021 1022 1023
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1024 1025 1026 1027
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1028
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1029 1030 1031 1032 1033 1034 1035
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1036 1037


1038
def logsumexp(x, axis=None, keepdim=False, name=None):
1039
    r"""
1040
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1041

1042
    .. math::
1043
       logsumexp(x) = \\log\\sum exp(x)
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1063

1064
    Returns:
1065 1066
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1067

1068
    Examples:
1069

1070
    .. code-block:: python
1071

1072 1073
        import paddle

1074
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1075 1076
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1077 1078

    """
1079 1080 1081 1082 1083 1084 1085
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1086

1087
    if in_dygraph_mode():
1088
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1089

1090 1091 1092
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1093

1094
    helper = LayerHelper('logsumexp', **locals())
1095
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1096 1097 1098 1099
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1100

S
swtkiwi 已提交
1101

1102 1103
def inverse(x, name=None):
    """
1104 1105 1106 1107 1108
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1109
        x (Tensor): The input tensor. The last two
1110 1111 1112 1113 1114 1115 1116 1117
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1118
        Tensor: A Tensor holds the inverse of x. The shape and data type
1119
                        is the same as x.
1120 1121 1122 1123 1124

    Examples:
        .. code-block:: python

            import paddle
1125 1126

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1127 1128
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1129 1130 1131

    """
    if in_dygraph_mode():
1132
        return core.ops.inverse(x)
1133

1134 1135
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1136
                                 ['float32', 'float64'], 'inverse')
1137
        if len(x.shape) < 2:
1138 1139 1140
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1141 1142
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1143
    helper = LayerHelper('inverse', **locals())
1144
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1145
    helper.append_op(
1146
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1147 1148 1149
    return out


1150
def max(x, axis=None, keepdim=False, name=None):
1151
    """
S
swtkiwi 已提交
1152

1153
    Computes the maximum of tensor elements over the given axis.
1154 1155

    Args:
1156
        x(Tensor): A tensor, the data type is float32,
1157
            float64, int32, int64.
1158
        axis(list|int, optional): The axis along which the maximum is computed.
1159
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1160
            `x` and return a Tensor with a single element,
1161 1162 1163
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1164
            output Tensor. The result tensor will have one fewer dimension
1165
            than the `x` unless :attr:`keepdim` is true, default
1166
            value is False.
1167
        name(str, optional): The default value is None.  Normally there is no need for
1168 1169 1170
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1171
        Tensor, results of maximum on the specified axis of input tensor,
1172
        it's data type is the same as `x`.
1173 1174 1175

    Examples:
        .. code-block:: python
1176

1177
            import paddle
1178

N
Noel 已提交
1179
            # data_x is a Tensor with shape [2, 4]
1180
            # the axis is a int element
1181 1182 1183

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1184
            result1 = paddle.max(x)
N
Noel 已提交
1185
            print(result1)
1186 1187
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1188
            print(result2)
1189 1190
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1191
            print(result3)
1192 1193
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1194
            print(result4)
1195 1196 1197
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1198
            # data_y is a Tensor with shape [2, 2, 2]
1199
            # the axis is list 
1200 1201 1202

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1203
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1204
            print(result5)
1205 1206
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1207
            print(result6)
1208
            #[7. 8.]
1209 1210
    """

1211
    if axis is not None and not isinstance(axis, list):
1212 1213 1214 1215 1216 1217 1218 1219
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1220 1221 1222 1223 1224
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1225

1226
    helper = LayerHelper('max', **locals())
1227
    check_variable_and_dtype(
1228
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1229

1230
    out = helper.create_variable_for_type_inference(
1231
            dtype=x.dtype)
1232 1233
    helper.append_op(
        type='reduce_max',
1234
        inputs={'X': x},
1235 1236
        outputs={'Out': out},
        attrs={
1237 1238
            'dim': axis,
            'keep_dim': keepdim,
1239 1240 1241 1242
            'reduce_all': reduce_all
        })
    return out

1243
def min(x, axis=None, keepdim=False, name=None):
1244
    """
S
swtkiwi 已提交
1245

1246
    Computes the minimum of tensor elements over the given axis
1247

1248
    Args:
1249 1250
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1251
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1252
            `x` and return a Tensor with a single element,
1253 1254 1255
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1256
            output Tensor. The result tensor will have one fewer dimension
1257
            than the `x` unless :attr:`keepdim` is true, default
1258
            value is False.
W
WuHaobo 已提交
1259
        name(str, optional): The default value is None.  Normally there is no need for 
1260
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1261

1262
    Returns:
1263
        Tensor, results of minimum on the specified axis of input tensor,
1264
        it's data type is the same as input's Tensor.
1265

1266 1267 1268
    Examples:
        .. code-block:: python

1269
            import paddle
1270

1271
            # x is a tensor with shape [2, 4]
1272
            # the axis is a int element
1273 1274
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1275
            result1 = paddle.min(x)
N
Noel 已提交
1276
            print(result1)
1277 1278
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1279
            print(result2)
1280 1281
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1282
            print(result3)
1283 1284
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1285
            print(result4)
1286 1287 1288
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1289
            # y is a Tensor with shape [2, 2, 2]
1290
            # the axis is list 
1291 1292
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1293
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1294
            print(result5)
1295 1296
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1297
            print(result6)
1298 1299
            #[1. 2.]
    """
1300

1301
    if axis is not None and not isinstance(axis, list):
1302 1303 1304 1305 1306 1307 1308
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1309 1310
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1311
    if in_dygraph_mode():
1312
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1313
                                   'reduce_all', reduce_all)
1314 1315 1316 1317 1318 1319

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1320
            dtype=x.dtype)
1321 1322
    helper.append_op(
        type='reduce_min',
1323
        inputs={'X': x},
1324 1325
        outputs={'Out': out},
        attrs={
1326 1327
            'dim': axis,
            'keep_dim': keepdim,
1328 1329 1330 1331 1332
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1333
def log1p(x, name=None):
1334
    r"""
1335
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1336

1337 1338
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1339

1340
    Args:
S
Steffy-zxf 已提交
1341
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1342 1343 1344
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1345
        Tensor, the natural log of the input Tensor computed element-wise.
1346

1347 1348
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1349

1350
            import paddle
S
Steffy-zxf 已提交
1351 1352 1353 1354

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1355 1356 1357 1358 1359 1360 1361 1362 1363
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1364
    out = helper.create_variable_for_type_inference(dtype)
1365 1366
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1367

J
joejiong 已提交
1368
def log2(x, name=None):
1369
    r"""
J
joejiong 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1416

J
joejiong 已提交
1417 1418

def log10(x, name=None):
1419
    r"""
J
joejiong 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1468
def clip(x, min=None, max=None, name=None):
1469
    """
Y
Yang Zhang 已提交
1470
    This operator clip all elements in input into the range [ min, max ] and return
1471 1472 1473 1474
    a resulting tensor as the following equation:

    .. math::

1475
        Out = MIN(MAX(x, min), max)
1476 1477

    Args:
1478 1479
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1480
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1481
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1482 1483 1484 1485 1486 1487
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1488
        Tensor: A Tensor with the same data type and data shape as input.
1489 1490 1491 1492 1493

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1494

1495
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1496 1497
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1498
            print(out1)
Y
Yang Zhang 已提交
1499 1500
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1501
            print(out2)
Y
Yang Zhang 已提交
1502 1503
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1504 1505
    """

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1516

W
WuHaobo 已提交
1517
    if in_dygraph_mode():
1518 1519 1520 1521
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1522 1523
        min = min_ if min is None else min
        max = max_ if max is None else max
Y
Yang Zhang 已提交
1524
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1525

1526
    if min is not None:
Y
Yang Zhang 已提交
1527
        check_type(min, 'min', (float, int, Variable), 'clip')
1528 1529
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1530
                        'clip', '(When the type of min in clip is Variable.)')
1531
    if max is not None:
Y
Yang Zhang 已提交
1532
        check_type(max, 'max', (float, int, Variable), 'clip')
1533 1534
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1535
                        'clip', '(When the type of max in clip is Variable.)')
1536

1537
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1538 1539

    inputs = {'X': x}
1540
    attrs = {'min': min_, 'max': max_}
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1554
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1555
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1556
        dtype=helper.input_dtype('x'))
1557 1558 1559 1560
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1561

W
WuHaobo 已提交
1562

1563
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1564
    """
1565
    **trace**
S
swtkiwi 已提交
1566

1567
    This OP computes the sum along diagonals of the input tensor x.
1568 1569

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1570

1571
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1572
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1573
    of the input tensor x.
L
Li Fuchen 已提交
1574

1575
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1576 1577 1578 1579

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1580
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1581

L
Li Fuchen 已提交
1582
    Args:
1583
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1584 1585 1586
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1587 1588 1589
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1590
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1591 1592 1593 1594 1595

    Examples:
        .. code-block:: python

            import paddle
1596

1597 1598 1599
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1600 1601 1602
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1603
    """
1604 1605
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1606 1607

    def __check_input(input, offset, dim1, dim2):
1608
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1609 1610 1611
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1612
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1613
        assert len(input_shape) >= 2,                     \
1614 1615
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1616 1617
                len(input_shape)

1618 1619
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1620

1621 1622 1623
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1624

1625 1626 1627
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1628 1629


1630 1631 1632
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1633

1634 1635 1636
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1637
    if not in_dygraph_mode():
1638
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1639 1640
    helper = LayerHelper('trace', **locals())

1641
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1642 1643 1644

    helper.append_op(
        type='trace',
1645
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1646
        attrs={'offset': offset,
1647 1648
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1649 1650 1651
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1652
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1653
def kron(x, y, name=None):
S
swtkiwi 已提交
1654 1655 1656
    """

${comment}
F
Feiyu Chan 已提交
1657 1658

    Args:
N
Noel 已提交
1659
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1660
            float64, int32 or int64.
N
Noel 已提交
1661
        y (Tensor): the second operand of kron op, data type: float16,
1662
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1663
            with x.
1664 1665
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1666 1667 1668
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1669
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1670 1671 1672

    Examples:
        .. code-block:: python
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1685 1686 1687 1688 1689 1690 1691 1692
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1694 1695
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1696 1697 1698 1699


def cumsum(x, axis=None, dtype=None, name=None):
    """
1700 1701 1702 1703
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1704 1705

    Args:
1706
        x (Tensor): The input tensor needed to be cumsumed.
1707 1708 1709 1710 1711
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1712
        Tensor, the result of cumsum operator. 
1713 1714 1715 1716 1717

    Examples:
        .. code-block:: python
            
            import paddle
1718 1719 1720
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1760

J
Jack Zhou 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1777

1778
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1779
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1780
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1806
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1807
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1808
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1834
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1835
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1836
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1847 1848 1849 1850 1851
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1852
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1862
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1872
    
G
guofei 已提交
1873 1874 1875 1876 1877 1878
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1879 1880
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1897 1898
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1931
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1948
    r"""
W
WangXi 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1967
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1968
            out = paddle.tanh(x)
N
Noel 已提交
1969
            print(out)
W
WangXi 已提交
1970 1971 1972 1973 1974 1975
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1976
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1977 1978 1979 1980
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
    if in_dygraph_mode():
        return core.ops.tanh_(x)

    _print_warning_in_static_mode("tanh")
    return tanh(x, name)

S
Steffy-zxf 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2038
            Tensor with a single element, otherwise must be in the
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2061
            # x is a bool Tensor with following elements:
2062 2063
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2064
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2065
            print(x)
S
syyxsxx 已提交
2066
            x = paddle.cast(x, 'bool')
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2081 2082
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2132
            Tensor with a single element, otherwise must be in the
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2155
            # x is a bool Tensor with following elements:
2156 2157
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2158
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2159
            print(x)
S
syyxsxx 已提交
2160
            x = paddle.cast(x, 'bool')
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
S
syyxsxx 已提交
2175 2176
            out4 = paddle.any(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[True], [False]]
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
        return core.ops.conj(x)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out