gru_compute.cc 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
W
wanghuancoder 已提交
13

Y
Yi Wang 已提交
14 15
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
16
#include "paddle/phi/kernels/funcs/blas/blas.h"
G
guosheng 已提交
17 18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
23 24
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
25 26 27
                      GRUMetaValue<T> value,
                      int frame_size,
                      int batch_size,
28
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
29 30
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
31
#if !defined(__NVCC__) && !defined(__HIPCC___)
32
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
33
    if (value.prev_out_value) {
34 35 36 37 38 39 40 41 42 43 44 45 46
      blas.GEMM(false,
                false,
                batch_size,
                frame_size * 2,
                frame_size,
                1,
                value.prev_out_value,
                frame_size,
                value.gate_weight,
                frame_size * 2,
                1,
                value.gate_value,
                frame_size * 3);
G
guosheng 已提交
47 48
    }

49 50 51 52 53 54
    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(),
                                 value,
                                 frame_size,
                                 batch_size,
                                 active_gate,
                                 true,
J
Jack Zhou 已提交
55
                                 nullptr);
G
guosheng 已提交
56

G
guosheng 已提交
57
    if (value.prev_out_value) {
58 59 60 61 62 63 64 65 66 67 68 69
      blas.GEMM(false,
                false,
                batch_size,
                frame_size,
                frame_size,
                1,
                value.reset_output_value,
                frame_size,
                value.state_weight,
                frame_size,
                1,
                value.gate_value + frame_size * 2,
Y
Yu Yang 已提交
70
                frame_size * 3);
G
guosheng 已提交
71 72
    }

73 74 75 76 77 78 79 80
    detail::forward_final_output(detail::forward::gru_finalOutput<T>(),
                                 value,
                                 frame_size,
                                 batch_size,
                                 active_node,
                                 origin_mode,
                                 true,
                                 nullptr);
G
guosheng 已提交
81 82 83 84 85
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
86 87
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
88 89 90 91
                      GRUMetaValue<T> value,
                      GRUMetaGrad<T> grad,
                      int frame_size,
                      int batch_size,
92
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
93 94
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
95
#if !defined(__NVCC__) && !defined(__HIPCC___)
96 97 98 99 100 101
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(),
                                value,
                                grad,
                                frame_size,
                                batch_size,
                                active_node,
Q
Qiao Longfei 已提交
102
                                origin_mode);
103
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
104
    if (value.prev_out_value && grad.prev_out_grad) {
105 106 107 108 109 110 111 112 113 114 115 116
      blas.GEMM(false,
                true,
                batch_size,
                frame_size,
                frame_size,
                1,
                grad.gate_grad + frame_size * 2,
                frame_size * 3,
                value.state_weight,
                frame_size,
                0,
                grad.reset_output_grad,
Y
Yu Yang 已提交
117
                frame_size);
G
guosheng 已提交
118

G
guosheng 已提交
119
      if (grad.state_weight_grad) {
120 121 122 123 124 125 126 127 128 129 130 131 132
        blas.GEMM(true,
                  false,
                  frame_size,
                  frame_size,
                  batch_size,
                  1,
                  value.reset_output_value,
                  frame_size,
                  grad.gate_grad + frame_size * 2,
                  frame_size * 3,
                  1,
                  grad.state_weight_grad,
                  frame_size);
G
guosheng 已提交
133 134 135
      }
    }

136 137 138 139 140 141
    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(),
                                value,
                                grad,
                                frame_size,
                                batch_size,
                                active_gate);
G
guosheng 已提交
142
    if (grad.prev_out_grad && value.prev_out_value) {
143 144 145 146 147 148 149 150 151 152 153 154 155
      blas.GEMM(false,
                true,
                batch_size,
                frame_size,
                frame_size * 2,
                1,
                grad.gate_grad,
                frame_size * 3,
                value.gate_weight,
                frame_size * 2,
                1,
                grad.prev_out_grad,
                frame_size);
G
guosheng 已提交
156

G
guosheng 已提交
157
      if (grad.gate_weight_grad) {
158 159 160 161 162 163 164 165 166 167 168 169 170
        blas.GEMM(true,
                  false,
                  frame_size,
                  frame_size * 2,
                  batch_size,
                  1,
                  value.prev_out_value,
                  frame_size,
                  grad.gate_grad,
                  frame_size * 3,
                  1,
                  grad.gate_weight_grad,
                  frame_size * 2);
G
guosheng 已提交
171 172 173 174 175 176
      }
    }
#endif
  }
};

177 178 179
template <typename T>
struct GRUUnitFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
180 181 182
                      GRUMetaValue<T> value,
                      int frame_size,
                      int batch_size,
183 184
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
185
#if !defined(__NVCC__) && !defined(__HIPCC___)
186
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
187
    if (value.prev_out_value) {
188 189 190 191 192 193 194 195 196
      blas.GEMM(CblasNoTrans,
                CblasTrans,
                batch_size,
                frame_size,
                frame_size,
                1,
                value.prev_out_value,
                value.state_weight,
                0,
197 198
                value.reset_output_value);
    }
199 200 201 202 203 204
    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(),
                                 value,
                                 frame_size,
                                 batch_size,
                                 active_gate,
                                 false,
205
                                 &context);
206 207 208 209

    T *cell_state_value = value.gate_value + 2 * frame_size;
    T *reset_output_value = value.reset_output_value;
    for (int b = 0; b < batch_size; ++b) {
210 211
      blas.VADD(
          frame_size, cell_state_value, reset_output_value, cell_state_value);
212 213 214 215
      cell_state_value += frame_size * 3;
      reset_output_value += frame_size;
    }

216 217 218 219 220 221 222 223
    detail::forward_final_output(detail::forward::gru_finalOutput<T>(),
                                 value,
                                 frame_size,
                                 batch_size,
                                 active_node,
                                 true,
                                 false,
                                 &context);
224 225 226 227 228 229 230
#endif
  }
};

template <typename T>
struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
231 232 233 234
                      GRUMetaValue<T> value,
                      GRUMetaGrad<T> grad,
                      int frame_size,
                      int batch_size,
235 236
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
237
#if !defined(__NVCC__) && !defined(__HIPCC___)
238 239
    // calculate grad_update_gate, grad_frame_state,
    // grad_reset_output, grad_reset_gate
240 241 242 243 244 245 246 247
    detail::cpu_gru_backward(context,
                             detail::backward::gru<T>(),
                             value,
                             grad,
                             frame_size,
                             batch_size,
                             active_node,
                             active_gate);
248
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
249 250
    if (grad.prev_out_grad && value.prev_out_value) {
      // update prev_out_grad
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
      blas.GEMM(false,
                false,
                batch_size,
                frame_size,
                frame_size,
                1,
                grad.gate_grad,
                frame_size * 3,
                value.gate_weight,
                frame_size,
                1,
                grad.prev_out_grad,
                frame_size);
      blas.GEMM(false,
                false,
                batch_size,
                frame_size,
                frame_size,
                1,
                grad.gate_grad + frame_size,
                frame_size * 3,
                value.gate_weight + frame_size * frame_size,
                frame_size,
                1,
                grad.prev_out_grad,
                frame_size);
      blas.GEMM(false,
                false,
                batch_size,
                frame_size,
                frame_size,
                1,
                grad.reset_output_grad,
                frame_size,
                value.state_weight,
                frame_size,
                1,
                grad.prev_out_grad,
                frame_size);
290 291 292
      // update weight_hh_grad
      if (grad.gate_weight_grad) {
        // reset gate
293 294 295 296 297 298 299 300 301 302 303 304 305
        blas.GEMM(true,
                  false,
                  frame_size,
                  frame_size,
                  batch_size,
                  1,
                  grad.gate_grad,
                  frame_size * 3,
                  value.prev_out_value,
                  frame_size,
                  1,
                  grad.gate_weight_grad,
                  frame_size);
306
        // update gate
307 308 309 310 311 312 313 314 315 316 317 318 319
        blas.GEMM(true,
                  false,
                  frame_size,
                  frame_size,
                  batch_size,
                  1,
                  grad.gate_grad + frame_size,
                  frame_size * 3,
                  value.prev_out_value,
                  frame_size,
                  1,
                  grad.gate_weight_grad + frame_size * frame_size,
                  frame_size);
320
        // cell state
321 322 323 324 325 326 327 328 329 330 331 332 333
        blas.GEMM(true,
                  false,
                  frame_size,
                  frame_size,
                  batch_size,
                  1,
                  grad.reset_output_grad,
                  frame_size,
                  value.prev_out_value,
                  frame_size,
                  1,
                  grad.state_weight_grad,
                  frame_size);
334 335 336 337 338 339 340 341 342
      }
    }
    // update bias_hh_grad
    T *gate_grad = grad.gate_grad;
    T *bias_hh_grad = grad.bias_hh_grad;
    T *state_bias_grad = grad.bias_hh_grad + 2 * frame_size;
    T *reset_output_grad = grad.reset_output_grad;
    for (int b = 0; b < batch_size; ++b) {
      blas.VADD(2 * frame_size, bias_hh_grad, gate_grad, bias_hh_grad);
343 344
      blas.VADD(
          frame_size, state_bias_grad, reset_output_grad, state_bias_grad);
345 346 347
      gate_grad += 3 * frame_size;
      reset_output_grad += frame_size;
    }
348 349 350 351
#endif
  }
};

Q
QI JUN 已提交
352 353 354 355
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
356

357 358 359 360 361
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, double>;

G
guosheng 已提交
362 363 364
}  // namespace math
}  // namespace operators
}  // namespace paddle