gru_compute.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
W
wanghuancoder 已提交
13

Y
Yu Yang 已提交
14
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
G
guosheng 已提交
17

W
wanghuancoder 已提交
18 19 20 21 22 23
namespace paddle {
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

G
guosheng 已提交
24 25 26 27 28
namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
29 30
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
31 32
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
33 34
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
35
#ifndef __NVCC__
Y
Yu Yang 已提交
36
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
37
    if (value.prev_out_value) {
Y
Yu Yang 已提交
38 39 40
      blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
                value.prev_out_value, frame_size, value.gate_weight,
                frame_size * 2, 1, value.gate_value, frame_size * 3);
G
guosheng 已提交
41 42 43
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
44
                                 frame_size, batch_size, active_gate, true,
J
Jack Zhou 已提交
45
                                 nullptr);
G
guosheng 已提交
46

G
guosheng 已提交
47
    if (value.prev_out_value) {
Y
Yu Yang 已提交
48 49 50 51
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                value.reset_output_value, frame_size, value.state_weight,
                frame_size, 1, value.gate_value + frame_size * 2,
                frame_size * 3);
G
guosheng 已提交
52 53 54
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
Q
Qiao Longfei 已提交
55
                                 frame_size, batch_size, active_node,
J
Jack Zhou 已提交
56
                                 origin_mode, true, nullptr);
G
guosheng 已提交
57 58 59 60 61
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
62 63
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
64
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
65
                      int frame_size, int batch_size,
66
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
67 68
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
69 70
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
Q
Qiao Longfei 已提交
71 72
                                grad, frame_size, batch_size, active_node,
                                origin_mode);
Y
Yu Yang 已提交
73
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
74
    if (value.prev_out_value && grad.prev_out_grad) {
Y
Yu Yang 已提交
75 76 77 78
      blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size * 2, frame_size * 3,
                value.state_weight, frame_size, 0, grad.reset_output_grad,
                frame_size);
G
guosheng 已提交
79

G
guosheng 已提交
80
      if (grad.state_weight_grad) {
Y
Yu Yang 已提交
81 82 83 84
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  value.reset_output_value, frame_size,
                  grad.gate_grad + frame_size * 2, frame_size * 3, 1,
                  grad.state_weight_grad, frame_size);
G
guosheng 已提交
85 86 87 88
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
Q
Qiao Longfei 已提交
89
                                grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
90
    if (grad.prev_out_grad && value.prev_out_value) {
Y
Yu Yang 已提交
91 92 93
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight,
                frame_size * 2, 1, grad.prev_out_grad, frame_size);
G
guosheng 已提交
94

G
guosheng 已提交
95
      if (grad.gate_weight_grad) {
Y
Yu Yang 已提交
96 97 98
        blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                  value.prev_out_value, frame_size, grad.gate_grad,
                  frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
99 100 101 102 103 104
      }
    }
#endif
  }
};

105 106 107 108 109 110 111 112 113 114 115 116 117 118
template <typename T>
struct GRUUnitFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
#ifndef __NVCC__
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    if (value.prev_out_value) {
      blas.GEMM(CblasNoTrans, CblasTrans, batch_size, frame_size, frame_size, 1,
                value.prev_out_value, value.state_weight, 0,
                value.reset_output_value);
    }
    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
119 120
                                 frame_size, batch_size, active_gate, false,
                                 &context);
121 122 123 124 125 126 127 128 129 130 131 132

    T *cell_state_value = value.gate_value + 2 * frame_size;
    T *reset_output_value = value.reset_output_value;
    for (int b = 0; b < batch_size; ++b) {
      blas.VADD(frame_size, cell_state_value, reset_output_value,
                cell_state_value);
      cell_state_value += frame_size * 3;
      reset_output_value += frame_size;
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
                                 frame_size, batch_size, active_node, true,
133
                                 false, &context);
134 135 136 137 138 139 140 141 142 143 144 145 146 147
#endif
  }
};

template <typename T>
struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
                      int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
#ifndef __NVCC__
    // calculate grad_update_gate, grad_frame_state,
    // grad_reset_output, grad_reset_gate
148
    detail::cpu_gru_backward(context, detail::backward::gru<T>(), value, grad,
149
                             frame_size, batch_size, active_node, active_gate);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    if (grad.prev_out_grad && value.prev_out_value) {
      // update prev_out_grad
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight, frame_size,
                1, grad.prev_out_grad, frame_size);
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size, frame_size * 3,
                value.gate_weight + frame_size * frame_size, frame_size, 1,
                grad.prev_out_grad, frame_size);
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.reset_output_grad, frame_size, value.state_weight,
                frame_size, 1, grad.prev_out_grad, frame_size);
      // update weight_hh_grad
      if (grad.gate_weight_grad) {
        // reset gate
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.gate_grad, frame_size * 3, value.prev_out_value,
                  frame_size, 1, grad.gate_weight_grad, frame_size);
        // update gate
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.gate_grad + frame_size, frame_size * 3,
                  value.prev_out_value, frame_size, 1,
                  grad.gate_weight_grad + frame_size * frame_size, frame_size);
        // cell state
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.reset_output_grad, frame_size, value.prev_out_value,
                  frame_size, 1, grad.state_weight_grad, frame_size);
      }
    }
    // update bias_hh_grad
    T *gate_grad = grad.gate_grad;
    T *bias_hh_grad = grad.bias_hh_grad;
    T *state_bias_grad = grad.bias_hh_grad + 2 * frame_size;
    T *reset_output_grad = grad.reset_output_grad;
    for (int b = 0; b < batch_size; ++b) {
      blas.VADD(2 * frame_size, bias_hh_grad, gate_grad, bias_hh_grad);
      blas.VADD(frame_size, state_bias_grad, reset_output_grad,
                state_bias_grad);
      gate_grad += 3 * frame_size;
      reset_output_grad += frame_size;
    }
192 193 194 195
#endif
  }
};

Q
QI JUN 已提交
196 197 198 199
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
200

201 202 203 204 205
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, double>;

G
guosheng 已提交
206 207 208
}  // namespace math
}  // namespace operators
}  // namespace paddle