gru_compute.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
Y
Yu Yang 已提交
13
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
G
guosheng 已提交
16 17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
22 23
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
24 25
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
26 27
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
28
#ifndef __NVCC__
Y
Yu Yang 已提交
29
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
30
    if (value.prev_out_value) {
Y
Yu Yang 已提交
31 32 33
      blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
                value.prev_out_value, frame_size, value.gate_weight,
                frame_size * 2, 1, value.gate_value, frame_size * 3);
G
guosheng 已提交
34 35 36
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
G
guosheng 已提交
37
                                 frame_size, batch_size, active_gate);
G
guosheng 已提交
38

G
guosheng 已提交
39
    if (value.prev_out_value) {
Y
Yu Yang 已提交
40 41 42 43
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                value.reset_output_value, frame_size, value.state_weight,
                frame_size, 1, value.gate_value + frame_size * 2,
                frame_size * 3);
G
guosheng 已提交
44 45 46
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
Q
Qiao Longfei 已提交
47 48
                                 frame_size, batch_size, active_node,
                                 origin_mode);
G
guosheng 已提交
49 50 51 52 53
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
54 55
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
56
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
57
                      int frame_size, int batch_size,
58
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
59 60
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
61 62
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
G
guosheng 已提交
63
                                grad, frame_size, batch_size, active_node);
Y
Yu Yang 已提交
64
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
65
    if (value.prev_out_value && grad.prev_out_grad) {
Y
Yu Yang 已提交
66 67 68 69
      blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size * 2, frame_size * 3,
                value.state_weight, frame_size, 0, grad.reset_output_grad,
                frame_size);
G
guosheng 已提交
70

G
guosheng 已提交
71
      if (grad.state_weight_grad) {
Y
Yu Yang 已提交
72 73 74 75
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  value.reset_output_value, frame_size,
                  grad.gate_grad + frame_size * 2, frame_size * 3, 1,
                  grad.state_weight_grad, frame_size);
G
guosheng 已提交
76 77 78 79
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
G
guosheng 已提交
80 81
                                grad, frame_size, batch_size, active_gate);
    if (grad.prev_out_grad && value.prev_out_value) {
Y
Yu Yang 已提交
82 83 84
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight,
                frame_size * 2, 1, grad.prev_out_grad, frame_size);
G
guosheng 已提交
85

G
guosheng 已提交
86
      if (grad.gate_weight_grad) {
Y
Yu Yang 已提交
87 88 89
        blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                  value.prev_out_value, frame_size, grad.gate_grad,
                  frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
90 91 92 93 94 95
      }
    }
#endif
  }
};

Q
QI JUN 已提交
96 97 98 99
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
100 101 102 103

}  // namespace math
}  // namespace operators
}  // namespace paddle