gru_compute.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
W
wanghuancoder 已提交
13

14
#include <string>
Y
Yu Yang 已提交
15
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
G
guosheng 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

G
guosheng 已提交
25 26 27 28 29
namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
30 31
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
32 33
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
34 35
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
36
#ifndef __NVCC__
Y
Yu Yang 已提交
37
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
38
    if (value.prev_out_value) {
Y
Yu Yang 已提交
39 40 41
      blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
                value.prev_out_value, frame_size, value.gate_weight,
                frame_size * 2, 1, value.gate_value, frame_size * 3);
G
guosheng 已提交
42 43 44
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
45 46
                                 frame_size, batch_size, active_gate, true,
                                 &context);
G
guosheng 已提交
47

G
guosheng 已提交
48
    if (value.prev_out_value) {
Y
Yu Yang 已提交
49 50 51 52
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                value.reset_output_value, frame_size, value.state_weight,
                frame_size, 1, value.gate_value + frame_size * 2,
                frame_size * 3);
G
guosheng 已提交
53 54 55
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
Q
Qiao Longfei 已提交
56
                                 frame_size, batch_size, active_node,
57
                                 origin_mode, &context);
G
guosheng 已提交
58 59 60 61 62
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
63 64
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
65
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
66
                      int frame_size, int batch_size,
67
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
68 69
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
70 71
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
Q
Qiao Longfei 已提交
72 73
                                grad, frame_size, batch_size, active_node,
                                origin_mode);
Y
Yu Yang 已提交
74
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
75
    if (value.prev_out_value && grad.prev_out_grad) {
Y
Yu Yang 已提交
76 77 78 79
      blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size * 2, frame_size * 3,
                value.state_weight, frame_size, 0, grad.reset_output_grad,
                frame_size);
G
guosheng 已提交
80

G
guosheng 已提交
81
      if (grad.state_weight_grad) {
Y
Yu Yang 已提交
82 83 84 85
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  value.reset_output_value, frame_size,
                  grad.gate_grad + frame_size * 2, frame_size * 3, 1,
                  grad.state_weight_grad, frame_size);
G
guosheng 已提交
86 87 88 89
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
Q
Qiao Longfei 已提交
90
                                grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
91
    if (grad.prev_out_grad && value.prev_out_value) {
Y
Yu Yang 已提交
92 93 94
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight,
                frame_size * 2, 1, grad.prev_out_grad, frame_size);
G
guosheng 已提交
95

G
guosheng 已提交
96
      if (grad.gate_weight_grad) {
Y
Yu Yang 已提交
97 98 99
        blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                  value.prev_out_value, frame_size, grad.gate_grad,
                  frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
100 101 102 103 104 105
      }
    }
#endif
  }
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119
template <typename T>
struct GRUUnitFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
#ifndef __NVCC__
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    if (value.prev_out_value) {
      blas.GEMM(CblasNoTrans, CblasTrans, batch_size, frame_size, frame_size, 1,
                value.prev_out_value, value.state_weight, 0,
                value.reset_output_value);
    }
    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
120 121
                                 frame_size, batch_size, active_gate, false,
                                 &context);
122 123 124 125 126 127 128 129 130 131 132 133

    T *cell_state_value = value.gate_value + 2 * frame_size;
    T *reset_output_value = value.reset_output_value;
    for (int b = 0; b < batch_size; ++b) {
      blas.VADD(frame_size, cell_state_value, reset_output_value,
                cell_state_value);
      cell_state_value += frame_size * 3;
      reset_output_value += frame_size;
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
                                 frame_size, batch_size, active_node, true,
134
                                 false, &context);
135 136 137 138 139 140 141 142 143 144 145 146 147 148
#endif
  }
};

template <typename T>
struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
                      int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
#ifndef __NVCC__
    // calculate grad_update_gate, grad_frame_state,
    // grad_reset_output, grad_reset_gate
149
    detail::cpu_gru_backward(context, detail::backward::gru<T>(), value, grad,
150
                             frame_size, batch_size, active_node, active_gate);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    if (grad.prev_out_grad && value.prev_out_value) {
      // update prev_out_grad
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight, frame_size,
                1, grad.prev_out_grad, frame_size);
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size, frame_size * 3,
                value.gate_weight + frame_size * frame_size, frame_size, 1,
                grad.prev_out_grad, frame_size);
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                grad.reset_output_grad, frame_size, value.state_weight,
                frame_size, 1, grad.prev_out_grad, frame_size);
      // update weight_hh_grad
      if (grad.gate_weight_grad) {
        // reset gate
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.gate_grad, frame_size * 3, value.prev_out_value,
                  frame_size, 1, grad.gate_weight_grad, frame_size);
        // update gate
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.gate_grad + frame_size, frame_size * 3,
                  value.prev_out_value, frame_size, 1,
                  grad.gate_weight_grad + frame_size * frame_size, frame_size);
        // cell state
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  grad.reset_output_grad, frame_size, value.prev_out_value,
                  frame_size, 1, grad.state_weight_grad, frame_size);
      }
    }
    // update bias_hh_grad
    T *gate_grad = grad.gate_grad;
    T *bias_hh_grad = grad.bias_hh_grad;
    T *state_bias_grad = grad.bias_hh_grad + 2 * frame_size;
    T *reset_output_grad = grad.reset_output_grad;
    for (int b = 0; b < batch_size; ++b) {
      blas.VADD(2 * frame_size, bias_hh_grad, gate_grad, bias_hh_grad);
      blas.VADD(frame_size, state_bias_grad, reset_output_grad,
                state_bias_grad);
      gate_grad += 3 * frame_size;
      reset_output_grad += frame_size;
    }
193 194 195 196
#endif
  }
};

Q
QI JUN 已提交
197 198 199 200
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
201

202 203 204 205 206
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, double>;

G
guosheng 已提交
207 208 209
}  // namespace math
}  // namespace operators
}  // namespace paddle