dist_reshape.py 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18 19 20 21 22 23 24
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
27
from paddle.fluid.framework import _non_static_mode
28 29
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
30
from .dist_default import DistributedDefaultImpl0
31 32


33
class DistributedReshape2(DistributedOperatorImplContainer):
34

35 36
    def __init__(self, op_type):
        super(DistributedReshape2, self).__init__(op_type)
37 38


39
register_distributed_operator_impl_container(DistributedReshape2("reshape2"))
40 41 42


class DistributedReshapeImpl0(DistributedOperatorImpl):
43

44
    def __init__(self, name):
45
        super(DistributedReshapeImpl0, self).__init__(name)
46
        self._forward_implemented = True
47
        self._backward_implemented = False
48

49 50 51
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
52 53 54 55 56 57 58 59 60 61
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

62 63 64
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
65 66 67 68 69 70 71 72 73 74 75 76 77
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
78
    def is_auto_compatible(self, dist_op):
79 80 81 82
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
83 84 85 86 87 88 89 90 91 92
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

93 94
        for idx, dim_mapping in enumerate(out_dims_mapping[:-1]):
            if x_dims_mapping[idx] != dim_mapping:
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
95 96 97 98 99 100 101 102 103 104
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

105
    def update_dims_mapping(self, dist_op):
106
        changed = False
107 108
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

128 129 130 131 132 133
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

134
        dist_op_context = ctx.dist_op_context
135 136 137
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
138
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
139 140 141
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

142
        # check validation of inputs / outputs
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
170
        process_mesh_shape = op_dist_attr.process_mesh.topology
171 172 173 174 175

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
176 177
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
178 179

        # create op
180
        new_op_desc = main_block.append_op(type='nop').desc
181
        new_op_desc.copy_from(src_op.desc)
182
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
183 184 185 186 187 188 189 190 191
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
192
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
193

194 195

class DistributedReshapeImpl1(DistributedOperatorImpl):
196

197
    def __init__(self, name):
198
        super(DistributedReshapeImpl1, self).__init__(name)
199
        self._forward_implemented = True
200
        self._backward_implemented = False
201

202 203 204
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
205 206 207 208 209 210 211 212 213 214 215 216 217
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

218 219 220
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
221 222 223 224 225 226 227 228 229 230
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
231
    def is_auto_compatible(self, dist_op):
232 233 234 235
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False

249
        for idx, item in enumerate(x_dims_mapping[:-1]):
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
250 251 252 253 254 255 256 257 258 259 260
            if out_dims_mapping[idx] != item:
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

261
    def update_dims_mapping(self, dist_op):
262
        changed = False
263 264
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

284 285 286 287 288 289
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

290
        dist_op_context = ctx.dist_op_context
291 292 293
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
294
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
295 296 297
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

298
        # check validation of inputs / outputs
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
326
        process_mesh_shape = op_dist_attr.process_mesh.topology
327 328 329 330 331

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
332 333
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
334 335

        # create op
336
        new_op_desc = main_block.append_op(type='nop').desc
337
        new_op_desc.copy_from(src_op.desc)
338
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
339 340 341 342 343 344 345 346 347
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
348
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
349

350

351
class DistributedReshapeImpl2(DistributedOperatorImpl):
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    def __init__(self, name):
        super(DistributedReshapeImpl2, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = False

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        x_name = op_desc.input('X')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for idx, item in enumerate(x_dims_mapping[:-1]):
            if out_dims_mapping[idx] != item:
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != out_dims_mapping[:]:
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping) - 1):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(out_dims_mapping)):
            x_shape_dims_mapping[i + 1] = out_dims_mapping[i]

        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        out_dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
        process_mesh_shape = op_dist_attr.process_mesh.topology

        # modify target shape
        for idx, axis in enumerate(out_dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
481 482
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
483 484

        # create op
485
        new_op_desc = main_block.append_op(type='nop').desc
486 487 488 489 490 491 492 493 494 495 496 497 498 499
        new_op_desc.copy_from(src_op.desc)
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)


500 501 502 503
register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))
504 505
register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl2("same_dim_shape"))