dist_reshape.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18 19 20 21 22 23 24
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26 27 28 29
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
30 31


32
class DistributedReshape2(DistributedOperatorImplContainer):
33 34 35 36 37
    def __init__(self, name):
        super(DistributedReshape2, self).__init__()
        self._name = name


38 39
register_distributed_operator_impl_container("reshape2",
                                             DistributedReshape2("reshape2"))
40 41 42 43 44 45


class DistributedReshapeImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl0, self).__init__()
        self._name = name
46
        self._forward_implemented = True
47
        self._backward_implemented = False
48

49 50 51
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
52 53 54 55 56 57 58 59 60 61
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

62 63 64
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
65 66 67 68 69 70 71 72 73 74 75 76 77
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        for idx, item in enumerate(out_dims_mapping[:-2]):
            if x_dims_mapping[idx] != item:
                return False
        if out_dims_mapping[-2] != x_dims_mapping[-1]:
            return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

108
    def update_dims_mapping(self, dist_op):
109
        changed = False
110 111
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

131 132 133 134 135 136
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

137 138 139 140 141
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
142 143 144
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

145
        # check validation of inputs / outputs
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
173
        process_mesh_shape = op_dist_attr.process_mesh.topology
174 175 176 177 178 179 180 181 182 183 184

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
185
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
186 187 188 189 190 191 192 193 194 195 196 197
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
        pass
198

199 200 201 202 203

class DistributedReshapeImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl1, self).__init__()
        self._name = name
204
        self._forward_implemented = True
205
        self._backward_implemented = False
206

207 208 209
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
210 211 212 213 214 215 216 217 218 219 220 221 222
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

223 224 225
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
226 227 228 229 230 231 232 233 234 235
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        if len(x_dims_mapping) == len(out_dims_mapping) + 2:
            if out_dims_mapping[0] != x_dims_mapping[0]:
                return False
            if x_dims_mapping[-1] != -1 or x_dims_mapping[-2] != -1:
                return False
        elif len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        for idx, item in enumerate(x_dims_mapping[:-2]):
            if out_dims_mapping[idx] != item:
                return False

        if x_dims_mapping[-2] != out_dims_mapping[-1]:
            return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

273
    def update_dims_mapping(self, dist_op):
274
        changed = False
275 276
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

296 297 298 299 300 301
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

302 303 304 305 306
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
307 308 309
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

310
        # check validation of inputs / outputs
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
338
        process_mesh_shape = op_dist_attr.process_mesh.topology
339 340 341 342 343 344 345 346 347 348 349

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
350
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
351 352 353 354 355 356 357 358 359 360 361 362
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
        pass
363

364 365 366 367 368

register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))