dist_reshape.py 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18 19 20 21 22 23 24
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26 27 28 29
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
30
from .dist_default import DistributedDefaultImpl0
31 32


33
class DistributedReshape2(DistributedOperatorImplContainer):
34 35
    def __init__(self, op_type):
        super(DistributedReshape2, self).__init__(op_type)
36 37


38
register_distributed_operator_impl_container(DistributedReshape2("reshape2"))
39 40 41 42


class DistributedReshapeImpl0(DistributedOperatorImpl):
    def __init__(self, name):
43
        super(DistributedReshapeImpl0, self).__init__(name)
44
        self._forward_implemented = True
45
        self._backward_implemented = False
46

47 48 49
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
50 51 52 53 54 55 56 57 58 59
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

60 61 62
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
63 64 65 66 67 68 69 70 71 72 73 74 75
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
76
    def is_auto_compatible(self, dist_op):
77 78 79 80
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
81 82 83 84 85 86 87 88 89 90
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

91 92
        for idx, dim_mapping in enumerate(out_dims_mapping[:-1]):
            if x_dims_mapping[idx] != dim_mapping:
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
93 94 95 96 97 98 99 100 101 102
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

103
    def update_dims_mapping(self, dist_op):
104
        changed = False
105 106
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

126 127 128 129 130 131
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

132
        dist_op_context = ctx.dist_op_context
133 134 135
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
136
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
137 138 139
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

140
        # check validation of inputs / outputs
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
168
        process_mesh_shape = op_dist_attr.process_mesh.topology
169 170 171 172 173 174 175 176 177 178 179

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
180
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
181 182 183 184 185 186 187 188 189 190 191
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
192
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
193

194 195 196

class DistributedReshapeImpl1(DistributedOperatorImpl):
    def __init__(self, name):
197
        super(DistributedReshapeImpl1, self).__init__(name)
198
        self._forward_implemented = True
199
        self._backward_implemented = False
200

201 202 203
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
204 205 206 207 208 209 210 211 212 213 214 215 216
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

217 218 219
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
220 221 222 223 224 225 226 227 228 229
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
230
    def is_auto_compatible(self, dist_op):
231 232 233 234
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False

248
        for idx, item in enumerate(x_dims_mapping[:-1]):
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
249 250 251 252 253 254 255 256 257 258 259
            if out_dims_mapping[idx] != item:
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

260
    def update_dims_mapping(self, dist_op):
261
        changed = False
262 263
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

283 284 285 286 287 288
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

289
        dist_op_context = ctx.dist_op_context
290 291 292
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
293
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
294 295 296
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

297
        # check validation of inputs / outputs
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
325
        process_mesh_shape = op_dist_attr.process_mesh.topology
326 327 328 329 330 331 332 333 334 335 336

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[idx] = shape_list[idx] // process_mesh_shape[
                        axis]

        # create op
        new_op_desc = main_block.desc.append_op()
        new_op_desc.copy_from(src_op.desc)
337
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
338 339 340 341 342 343 344 345 346 347 348
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

        main_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):
349
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
350

351 352 353 354 355

register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))