dist_reshape.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from .common import DistributedOperator
from .common import DistributedOperatorImpl
from .common import register_distributed_operator
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25 26 27 28
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43


class DistributedReshape2(DistributedOperator):
    def __init__(self, name):
        super(DistributedReshape2, self).__init__()
        self._name = name


register_distributed_operator("reshape2", DistributedReshape2("reshape2"))


class DistributedReshapeImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl0, self).__init__()
        self._name = name
44 45
        self._forward_implemented = True
        self._backward_implemented = False
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 3, "Dist op of Reshape take 3 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 2, "Dist op of Reshape take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "Dist op of Reshape input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['ShapeTensor']
            ) <= 1, "Dist op of Reshape input ShapeTensor take 0 or 1 variable but got {}".format(
                input_name_mapping['ShapeTensor'])
            assert len(
                input_name_mapping['Shape']
            ) <= 1, "Dist op of Reshape input Shape take 0 or 1 variable but got {}".format(
                input_name_mapping['Shape'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "Dist op of Reshape input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            assert len(
                output_name_mapping['XShape']
            ) == 1, "Dist op of Reshape input XShape take 1 variable but got {}".format(
                input_name_mapping['XShape'])

            X_var = dst_block.var(input_name_mapping['X'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])
            XShape_var = dst_block.var(output_name_mapping['XShape'][0])
            shape_list = src_op.desc.attr("shape")
            ShapeTensor_var_list = []
            for name in input_name_mapping['ShapeTensor']:
                ShapeTensor_var_list.append(name)
            Shape_var_list = []
            for name in input_name_mapping['Shape']:
                Shape_var_list.append(name)

            # got dist attribute info
            dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
            process_mesh_shape = op_dist_attr.get_process_mesh().topology

            # modify target shape
            for idx, axis in enumerate(dim_mapping):
                if axis >= 0:
                    if len(shape_list) > idx:
                        shape_list[idx] = shape_list[idx] // process_mesh_shape[
                            axis]

            # create op
            new_op_desc = dst_block.desc.append_op()
            new_op_desc.copy_from(src_op.desc)
            new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
            new_op_desc.set_input('Shape', Shape_var_list)
            new_op_desc.set_input('X', [X_var.name])
            new_op_desc.set_output('XShape', [XShape_var.name])
            new_op_desc.set_output('Out', [Out_var.name])
            new_op_desc._set_attr('shape', shape_list)

            dst_block._sync_with_cpp()

        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle

177 178 179 180 181

class DistributedReshapeImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedReshapeImpl1, self).__init__()
        self._name = name
182 183
        self._forward_implemented = True
        self._backward_implemented = False
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    def forward(self, serial_op):
        def static_handle(dst_block,
                          src_op,
                          op_dist_attr,
                          input_name_mapping,
                          output_name_mapping,
                          rank_id=0):
            assert len(
                input_name_mapping
            ) == 3, "Dist op of Reshape take 3 inputs variable but got {}".format(
                input_name_mapping)
            assert len(
                output_name_mapping
            ) == 2, "Dist op of Reshape take 2 inputs variable but got {}".format(
                output_name_mapping)
            assert len(
                input_name_mapping['X']
            ) == 1, "Dist op of Reshape input X take 1 variable but got {}".format(
                input_name_mapping['X'])
            assert len(
                input_name_mapping['ShapeTensor']
            ) <= 1, "Dist op of Reshape input ShapeTensor take 0 or 1 variable but got {}".format(
                input_name_mapping['ShapeTensor'])
            assert len(
                input_name_mapping['Shape']
            ) <= 1, "Dist op of Reshape input Shape take 0 or 1 variable but got {}".format(
                input_name_mapping['Shape'])
            assert len(
                output_name_mapping['Out']
            ) == 1, "Dist op of Reshape input Out take 1 variable but got {}".format(
                input_name_mapping['Out'])
            assert len(
                output_name_mapping['XShape']
            ) == 1, "Dist op of Reshape input XShape take 1 variable but got {}".format(
                input_name_mapping['XShape'])

            X_var = dst_block.var(input_name_mapping['X'][0])
            Out_var = dst_block.var(output_name_mapping['Out'][0])
            XShape_var = dst_block.var(output_name_mapping['XShape'][0])
            shape_list = src_op.desc.attr("shape")
            ShapeTensor_var_list = []
            for name in input_name_mapping['ShapeTensor']:
                ShapeTensor_var_list.append(name)
            Shape_var_list = []
            for name in input_name_mapping['Shape']:
                Shape_var_list.append(name)

            # got dist attribute info
            dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
            process_mesh_shape = op_dist_attr.get_process_mesh().topology

            # modify target shape
            for idx, axis in enumerate(dim_mapping):
                if axis >= 0:
                    if len(shape_list) > idx:
                        shape_list[idx] = shape_list[idx] // process_mesh_shape[
                            axis]

            # create op
            new_op_desc = dst_block.desc.append_op()
            new_op_desc.copy_from(src_op.desc)
            new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
            new_op_desc.set_input('Shape', Shape_var_list)
            new_op_desc.set_input('X', [X_var.name])
            new_op_desc.set_output('XShape', [XShape_var.name])
            new_op_desc.set_output('Out', [Out_var.name])
            new_op_desc._set_attr('shape', shape_list)

            dst_block._sync_with_cpp()

        if in_dygraph_mode():
            raise NotImplementedError(
                "Dist op for [{}] with idx [{}] is NOT implemented yet.".format(
                    "matmul", 0))
        else:
            return static_handle

315 316 317 318 319

register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))