activation_op.kps 49.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
liaogang 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/activation_op.h"
13 14
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
15
#include "paddle/fluid/platform/bfloat16.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
17

18 19
#include "paddle/phi/kernels/funcs/activation_functor.h"

20 21 22
namespace paddle {
namespace operators {

23 24 25 26 27
template <typename T>
struct CudaCeilFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // ceil(x) = ceil(x)
28
  __device__ __forceinline__ T operator()(const T arg_x) const {
29
    MPType x = static_cast<MPType>(arg_x);
30 31 32 33 34 35 36 37 38
    return static_cast<T>(ceil(x));
  }
};

template <typename T>
struct CudaFloorFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // floor(x) = floor(x)
39
  __device__ __forceinline__ T operator()(const T arg_x) const {
40
    MPType x = static_cast<MPType>(arg_x);
41 42 43 44 45 46 47 48 49
    return static_cast<T>(floor(x));
  }
};

template <typename T>
struct CudaRoundFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // round(x) = round(x)
50
  __device__ __forceinline__ T operator()(const T arg_x) const {
51
    MPType x = static_cast<MPType>(arg_x);
52 53 54 55
    return static_cast<T>(round(x));
  }
};

56
// GradFunctor for ceil, floor and round
57 58
template <typename T>
struct CudaZeroGradFunctor : public BaseActivationFunctor<T> {
59
  __device__ __forceinline__ T operator()(const T x) const {
60 61 62
    return static_cast<T>(0.0f);
  }

63 64
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
65 66 67 68 69 70 71 72
  }
};

template <typename T>
struct CudaReciprocalFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // reciprocal(x) = 1 / x
73
  __device__ __forceinline__ T operator()(const T x) const { return one / x; }
74
};
75

76
template <typename T>
77 78
struct CudaReciprocalGradFunctor : public BaseActivationFunctor<T> {
  // dx = -dout * out^2
79
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
80
    return -dout * out * out;
81
  }
82

83 84 85
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
86
};
87

88 89 90 91 92
template <typename T>
struct CudaExpFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // exp(x) = exp(x)
93
  __device__ __forceinline__ T operator()(const T arg_x) const {
94
    MPType x = static_cast<MPType>(arg_x);
95 96 97
    return static_cast<T>(exp(x));
  }
};
98 99

template <typename T>
100 101
struct CudaExpGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
102
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
103
    return dout * out;
104
  }
105

106 107 108
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
109
};
110

R
ronnywang 已提交
111 112 113 114 115
template <typename T>
struct CudaExpm1Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // expm1(x) = expm1(x)
116
  __device__ __forceinline__ T operator()(const T arg_x) const {
117
    MPType x = static_cast<MPType>(arg_x);
R
ronnywang 已提交
118 119 120 121 122 123 124
    return static_cast<T>(expm1(x));
  }
};

template <typename T>
struct CudaExpm1GradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
125
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
126
    return dout * out + dout;
R
ronnywang 已提交
127 128
  }

129 130 131
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
132 133
};

134 135 136 137 138
template <typename T>
struct CudaLogFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log(x) = log(x)
139
  __device__ __forceinline__ T operator()(const T arg_x) const {
140
    MPType x = static_cast<MPType>(arg_x);
141 142 143 144 145 146 147
    return static_cast<T>(log(x));
  }
};

template <typename T>
struct CudaLogGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout / x
148
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
149
    return dout / x;
150 151
  }

152
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
153 154 155 156 157
};

template <typename T>
struct CudaSquareFunctor : public BaseActivationFunctor<T> {
  // square(x) = x * x
158
  __device__ __forceinline__ T operator()(const T x) const { return x * x; }
159
};
160

161 162 163 164 165
template <typename T>
struct CudaSquareGradFunctor : public BaseActivationFunctor<T> {
  T two = static_cast<T>(2.0f);

  // dx = dout * 2 * x
166
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
167
    return dout * two * x;
168 169
  }

170
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
171 172
};

173 174 175 176 177
template <typename T>
struct CudaSqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // sqrt(x) = sqrt(x)
178
  __device__ __forceinline__ T operator()(const T arg_x) const {
179
    MPType x = static_cast<MPType>(arg_x);
180 181 182
    return static_cast<T>(sqrt(x));
  }
};
183

184 185 186 187 188
template <typename T>
struct CudaSqrtGradFunctor : public BaseActivationFunctor<T> {
  T one_half = static_cast<T>(0.5f);

  // dx = dout * 0.5 / out
189
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
190
    return one_half * dout / out;
191 192
  }

193 194 195
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
196
};
197

198 199 200 201 202
template <typename T>
struct CudaRsqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // rsqrt(x) = rsqrt(x)
203
  __device__ __forceinline__ T operator()(const T arg_x) const {
204
    MPType x = static_cast<MPType>(arg_x);
205 206 207 208 209 210 211 212
    return static_cast<T>(rsqrt(x));
  }
};

template <typename T>
struct CudaRsqrtGradFunctor : public BaseActivationFunctor<T> {
  T minus_one_half = static_cast<T>(-0.5f);

213
  // dx = -0.5 * dout * out^3
214
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
215
    return minus_one_half * dout * out * out * out;
216 217
  }

218 219 220
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
221
};
222

223 224 225 226 227 228
template <typename T>
struct CudaLog1pFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // log1p(x) = log(1 + x)
229
  __device__ __forceinline__ T operator()(const T arg_x) const {
230
    MPType x = static_cast<MPType>(arg_x);
231 232 233 234 235 236 237 238 239
    return static_cast<T>(log(one + x));
  }
};

template <typename T>
struct CudaLog1pGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + x)
240
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
241
    return dout / (one + x);
242 243
  }

244
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
245 246 247 248 249 250 251
};

template <typename T>
struct CudaLog2Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log2(x) = log2(x)
252
  __device__ __forceinline__ T operator()(const T arg_x) const {
253
    MPType x = static_cast<MPType>(arg_x);
254 255 256 257 258 259 260 261 262 263
    return static_cast<T>(log2(x));
  }
};

template <typename T>
struct CudaLog2GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_two = static_cast<T>(log(static_cast<MPType>(2.0f)));

  // dx = dout / (x * log(2))
264
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
265
    return dout / (x * log_two);
266 267
  }

268
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
269 270 271 272 273 274 275
};

template <typename T>
struct CudaLog10Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log10(x) = log10(x)
276
  __device__ __forceinline__ T operator()(const T arg_x) const {
277
    MPType x = static_cast<MPType>(arg_x);
278 279 280 281 282 283 284 285 286 287
    return static_cast<T>(log10(x));
  }
};

template <typename T>
struct CudaLog10GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_ten = static_cast<T>(log(static_cast<MPType>(10.0f)));

  // dx = dout / (x * log(10))
288
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
289
    return dout / (x * log_ten);
290 291
  }

292
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
293 294 295 296 297 298 299 300 301 302 303 304 305 306
};

template <typename T>
struct CudaSoftReluFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // soft_relu(x) = log(1 + exp(max(min(x, threshold), -threshold)))
  // threshold should not be negative
307
  __device__ __forceinline__ T operator()(const T arg_x) const {
308
    MPType x = static_cast<MPType>(arg_x);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    MPType t = static_cast<MPType>(threshold);
    MPType temp_min = x < t ? x : t;
    MPType temp_max = temp_min > -t ? temp_min : -t;
    return static_cast<T>(log(one + exp(temp_max)));
  }
};

template <typename T>
struct CudaSoftReluGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > -threshold && out < threshold) ? dout * (1 - exp(-out)) : 0
  // threshold should not be negative
328 329
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_out) const {
330 331
    MPType dout = static_cast<MPType>(arg_dout);
    MPType out = static_cast<MPType>(arg_out);
332 333 334 335 336
    MPType t = static_cast<MPType>(threshold);
    return (out > -t && out < t) ? static_cast<T>(dout * (one - exp(-out)))
                                 : static_cast<T>(0.0f);
  }

337 338 339
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
340 341 342 343 344 345 346 347 348 349 350 351 352
};

template <typename T>
struct CudaSTanhFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // stanh(x) = b * tanh(a * x)
353
  __device__ __forceinline__ T operator()(const T arg_x) const {
354
    MPType x = static_cast<MPType>(arg_x);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    return static_cast<T>(b * tanh(a * x));
  }
};

template <typename T>
struct CudaSTanhGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // dx = dout * a * b * (1 - tanh(a * x) * tanh(a * x))
373 374
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
375 376
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
377 378 379 380 381 382
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    MPType temp = tanh(a * x);
    return static_cast<T>(dout * a * b * (one - temp * temp));
  }

383
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
384 385 386 387 388 389 390 391 392 393 394 395 396 397
};

template <typename T>
struct CudaSoftplusFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // softplus(x) = beta * x > threshold ? x : log(1 + exp(beta * x)) / beta
398
  __device__ __forceinline__ T operator()(const T arg_x) const {
399
    MPType x = static_cast<MPType>(arg_x);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
    return static_cast<T>(x_beta > t ? x : log(one + exp(x_beta)) / b);
  }
};

template <typename T>
struct CudaSoftplusGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // dx = x * beta > threshold ? dout : dout / (1 + exp(-beta * x))
419 420
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
421 422
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
423 424 425
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
426
    return x_beta > t ? arg_dout : static_cast<T>(dout / (one + exp(-x_beta)));
427 428
  }

429
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
430 431 432 433 434 435 436
};

template <typename T>
struct CudaSoftsignFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // softsign(x) = x / (1 + abs(x))
437
  __device__ __forceinline__ T operator()(const T x) const {
438
    return x / (one + abs(x));
439 440 441 442 443 444 445 446
  }
};

template <typename T>
struct CudaSoftsignGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + abs(x))^2
447
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
448 449
    T temp = one + abs(x);
    return dout / (temp * temp);
450 451
  }

452
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
453 454 455 456 457 458 459 460 461 462 463 464
};

template <typename T>
struct CudaRelu6Functor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // relu6(x) = min(max(0, x), 6)
465
  __device__ __forceinline__ T operator()(const T x) const {
466
    T t = static_cast<T>(threshold);
467
    return x <= zero ? zero : (x < t ? x : t);
468 469 470 471 472 473 474 475 476 477 478 479 480
  }
};

template <typename T>
struct CudaRelu6GradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > 0 && out < t) ? dout : 0
481
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
482
    T t = static_cast<T>(threshold);
483
    return (out > zero && out < t) ? dout : zero;
484 485
  }

486 487 488
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
489 490 491 492 493 494 495 496 497 498 499 500 501
};

template <typename T>
struct CudaSwishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // swish(x) = x / (1 + exp(-beta * x))
502
  __device__ __forceinline__ T operator()(const T arg_x) const {
503
    MPType x = static_cast<MPType>(arg_x);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    MPType b = static_cast<MPType>(beta);
    return static_cast<T>(x / (one + exp(-b * x)));
  }
};

template <typename T>
struct CudaSwishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // dx = dout * (1 + exp(-b * x) + b * x * exp(-b * x) / (1 + exp(-b * x))^2)
520 521
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
522 523
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
524 525 526 527 528 529 530 531
    MPType b = static_cast<MPType>(beta);
    MPType temp1 = one / (one + exp(-b * x));
    MPType out = x * temp1;
    MPType temp2 = b * out;
    MPType temp3 = temp1 * (one - temp2);
    return static_cast<T>(dout * (temp2 + temp3));
  }

532
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
533 534
};

535 536 537 538 539 540 541 542 543 544 545 546 547 548
template <typename T>
struct CudaMishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // mish(x) = x * tanh(softplus(x))
  // softplus(x) = x, if x > threshold
  //             = ln(1 + exp(x)), otherwise
  // Inputs: args[0], the input x
549
  __device__ __forceinline__ T operator()(const T arg_x) const {
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    return static_cast<T>(x * tanh(sp));
  }
};

template <typename T>
struct CudaMishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
  // sp = softplus(x)
  // Inputs: args[0], the input dout
  //         args[1], the input x
570 571
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
572 573 574 575 576 577 578 579 580
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    MPType gsp =
        (x > static_cast<MPType>(threshold)) ? one : one / (one + exp(-x));
    MPType tsp = tanh(sp);
    return static_cast<T>(dout * (tsp + x * (one - tsp * tsp) * gsp));
  }

581
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
582 583
};

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
template <typename T>
struct CudaHardSwishFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // hard_swish(x) = 0, when x <= -offset
  //                 x , when x >= threshold - offset
  //                 x * (x + offset) / scale, otherwise
  // threshold = scale = 6, offset = 3 by default
599
  __device__ __forceinline__ T operator()(const T x) const {
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    T t = static_cast<T>(threshold);
    T temp = x + static_cast<T>(offset);
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < t ? temp_max : t;
    return temp_min * x / static_cast<T>(scale);
  }
};

template <typename T>
struct CudaHardSwishGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  T two = static_cast<T>(2.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // dx = 0, when x <= -offset
  //      dout , when x >= threshold - offset
  //      dout * (2 * x / scale + offset / scale), otherwise
  // threshold = scale = 6, offset = 3 by default
625
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
626 627 628 629
    T o = static_cast<T>(offset);
    T s = static_cast<T>(scale);
    T temp1 = static_cast<T>(x + o > zero);
    T temp2 = static_cast<T>(x + o < static_cast<T>(threshold));
630
    return dout * (temp1 * temp2 * (two * x + o) / s + one - temp2);
631 632
  }

633
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
634 635
};

636 637 638 639 640 641 642 643 644 645 646 647
template <typename T>
struct CudaCELUFunctor : public BaseActivationFunctor<T> {
  using CT = typename details::MPTypeTrait<T>::Type;
  CT zero = static_cast<CT>(0.0f);
  CT one = static_cast<CT>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1))
648
  __device__ __forceinline__ T operator()(const T arg_x) const {
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    CT x = static_cast<CT>(arg_x);
    CT temp = static_cast<CT>(alpha) * (exp(x / static_cast<CT>(alpha)) - one);
    CT res = (x > zero ? x : zero) + (temp > zero ? zero : temp);
    return static_cast<T>(res);
  }
};

template <typename T>
struct CudaCELUGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  MPType one = static_cast<MPType>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // dx = dout, if alpha > 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
  // dx = dout , if alpha < 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
671 672
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
673 674 675 676 677 678 679 680 681 682 683 684 685
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType a = static_cast<MPType>(alpha);
    MPType temp_a_pos = static_cast<MPType>(alpha > 0.0f);
    MPType temp_a_neg = static_cast<MPType>(alpha <= 0.0f);
    MPType temp_x_pos = static_cast<MPType>(x > zero);
    MPType temp_x_neg = static_cast<MPType>(x <= zero);
    return static_cast<T>(
        dout *
        (temp_a_pos * temp_x_pos + temp_a_pos * temp_x_neg * exp(x / a) +
         temp_a_neg * temp_x_pos + exp(x / a) * temp_a_neg * temp_x_neg));
  }

686
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
687 688
};

689
template <typename DeviceContext, typename Functor>
690
class ActivationCudaKernel
691 692 693
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
694 695
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor* x = nullptr;
696
    framework::Tensor* out = nullptr;
697 698 699 700 701 702
    ExtractActivationTensor(ctx, &x, &out);
    out->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::vector<const framework::Tensor*> ins = {x};
    std::vector<framework::Tensor*> outs = {out};
    auto functor = Functor();
703 704
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
705
      *attr.second = ctx.Attr<float>(attr.first);
706
    }
707 708
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
709 710 711 712
  }
};

template <typename DeviceContext, typename Functor>
713
class ActivationGradCudaKernel
714 715 716
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
717
  void Compute(const framework::ExecutionContext& ctx) const override {
718 719 720
    const framework::Tensor *x, *out, *d_out;
    framework::Tensor* d_x = nullptr;
    x = out = d_out = nullptr;
721
    ExtractActivationGradTensor<Functor::FwdDeps()>(ctx, &x, &out, &d_out,
722
                                                    &d_x);
723 724 725 726 727 728 729 730 731 732
    d_x->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto functor = Functor();
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }

    std::vector<const framework::Tensor*> ins = {d_out};
    std::vector<framework::Tensor*> outs = {d_x};
733

734 735
    if (static_cast<int>(Functor::FwdDeps()) ==
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
736
      // Only need forward output Out
737
      ins.push_back(out);
738 739
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
740
    } else if (static_cast<int>(Functor::FwdDeps()) ==
741
               static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
742
      // Only need forward input X
743
      ins.push_back(x);
744 745
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
746
    } else {
747 748
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
749 750 751 752
    }
  }
};

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
USE_PHI_FUNCTOR(CudaCos)
USE_PHI_FUNCTOR(CudaTan)
USE_PHI_FUNCTOR(CudaAcos)
USE_PHI_FUNCTOR(CudaSin)
USE_PHI_FUNCTOR(CudaAsin)
USE_PHI_FUNCTOR(CudaAtan)
USE_PHI_FUNCTOR(CudaSinh)
USE_PHI_FUNCTOR(CudaCosh)
USE_PHI_FUNCTOR(CudaAsinh)
USE_PHI_FUNCTOR(CudaAcosh)
USE_PHI_FUNCTOR(CudaAtanh)
USE_PHI_FUNCTOR(CudaTanh)
USE_PHI_FUNCTOR(CudaBRelu)
USE_PHI_FUNCTOR(CudaLeakyRelu)
USE_PHI_FUNCTOR(CudaThresholdedRelu)
Y
YuanRisheng 已提交
768 769 770 771 772
USE_PHI_FUNCTOR(CudaHardShrink)
USE_PHI_FUNCTOR(CudaSoftShrink)
USE_PHI_FUNCTOR(CudaTanhShrink)
USE_PHI_FUNCTOR(CudaSilu)
USE_PHI_FUNCTOR(CudaELU)
Y
YuanRisheng 已提交
773 774 775
USE_PHI_FUNCTOR(CudaSigmoid)
USE_PHI_FUNCTOR(CudaLogSigmoid)
USE_PHI_FUNCTOR(CudaHardSigmoid)
Y
YuanRisheng 已提交
776 777 778 779

template <typename T>
using CudaELUGradNegativeAlphaFunctor =
    phi::funcs::CudaELUGradNegativeAlphaFunctor<T>;
780

781 782 783
}  // namespace operators
}  // namespace paddle

784
namespace ops = paddle::operators;
785 786
namespace plat = paddle::platform;

787 788
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor,            \
                                        grad_functor)                          \
789
  REGISTER_OP_CUDA_KERNEL(                                                     \
790 791 792 793 794
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
795 796 797
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
798
  REGISTER_OP_CUDA_KERNEL(                                                     \
799 800 801 802 803 804
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
805 806 807
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
808

809 810 811 812 813 814 815 816 817 818 819 820
#define REGISTER_ACTIVATION_CUDA_KERNEL_INT(act_type, op_name, functor,        \
                                            grad_functor)                      \
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int>>,                            \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int64_t>>,                        \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
821 822 823
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
824 825 826 827 828 829 830 831 832 833 834
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int>>,                   \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int64_t>>,               \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
835 836 837
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
838

D
Double_V 已提交
839 840
/* ========================================================================== */

841 842 843 844 845 846 847 848 849 850 851 852 853
/* ======================== celu register  ============================ */
REGISTER_ACTIVATION_CUDA_KERNEL(celu, CELU, CudaCELUFunctor,
                                CudaCELUGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);
/* ========================================================================== */

L
lvmengsi 已提交
854
/* ===========================   sqrt register  ============================= */
855 856
REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                                CudaSqrtGradFunctor);
L
lvmengsi 已提交
857 858 859 860 861 862 863 864

REGISTER_OP_CUDA_KERNEL(
    sqrt_grad_grad,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
865 866 867
                              ops::SqrtGradGradFunctor<plat::float16>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<plat::bfloat16>>);
L
lvmengsi 已提交
868 869
/* ========================================================================== */

W
whs 已提交
870 871
/* ===========================   rsqrt register  =============================
 */
872 873
REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, CudaRsqrtFunctor,
                                CudaRsqrtGradFunctor);
W
whs 已提交
874 875 876 877 878 879 880 881 882 883 884

REGISTER_OP_CUDA_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

885
/* ===========================  square register  ============================ */
886 887
REGISTER_ACTIVATION_CUDA_KERNEL_INT(square, Square, CudaSquareFunctor,
                                    CudaSquareGradFunctor);
888 889 890 891 892 893 894 895

REGISTER_OP_CUDA_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
896
                                ops::SquareGradGradFunctor<plat::float16>>,
897 898
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
                                ops::SquareGradGradFunctor<plat::bfloat16>>,
899 900 901 902
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
903
/* ========================================================================== */
904 905 906 907 908

/* ==========================   pow register  ============================ */
REGISTER_OP_CUDA_KERNEL(
    pow, ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<float>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<double>>,
909 910
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int64_t>>,
911 912 913 914 915
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<float>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<double>>,
916 917
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int64_t>>,
918 919 920
    ops::PowGradKernel<plat::CUDADeviceContext,
                       ops::PowGradFunctor<plat::float16>>);
/* ========================================================================== */
921

W
wangzhen38 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/* ==========================   logit register  ============================ */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    logit_grad,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>);
/* ========================================================================== */

937 938
/* ==========================   exp register  ============================ */
REGISTER_OP_CUDA_KERNEL(
939 940 941 942
    exp, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                   ops::CudaExpFunctor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<double>>,
943 944
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int>>,
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int64_t>>,
945 946
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<plat::float16>>);
947
REGISTER_OP_CUDA_KERNEL(
948 949 950 951 952 953 954 955 956 957
    exp_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                            ops::CudaExpGradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int64_t>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<plat::float16>>);
958 959
/* ========================================================================== */

R
ronnywang 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/* ==========================   expm1 register  ============================ */

REGISTER_OP_CUDA_KERNEL(
    expm1, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                     ops::CudaExpm1Functor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<double>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    expm1_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                              ops::CudaExpm1GradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<plat::float16>>);
/* ========================================================================== */

978
/* ==========================  Log register ==================================*/
979
REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
980 981 982 983 984 985 986 987 988

REGISTER_OP_CUDA_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#define FOR_EACH_ACTIVATION_CUDA_OP(__macro)                                  \
  __macro(softshrink, SoftShrink, CudaSoftShrinkFunctor,                      \
          CudaSoftShrinkGradFunctor);                                         \
  __macro(ceil, Ceil, CudaCeilFunctor, CudaZeroGradFunctor);                  \
  __macro(floor, Floor, CudaFloorFunctor, CudaZeroGradFunctor);               \
  __macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor);               \
  __macro(reciprocal, Reciprocal, CudaReciprocalFunctor,                      \
          CudaReciprocalGradFunctor);                                         \
  __macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor);              \
  __macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor);                  \
  __macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor);              \
  __macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \
  __macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor);              \
  __macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor);  \
  __macro(softsign, Softsign, CudaSoftsignFunctor, CudaSoftsignGradFunctor);  \
  __macro(relu6, Relu6, CudaRelu6Functor, CudaRelu6GradFunctor);              \
  __macro(tanh_shrink, TanhShrink, CudaTanhShrinkFunctor,                     \
          CudaTanhShrinkGradFunctor);                                         \
  __macro(hard_shrink, HardShrink, CudaHardShrinkFunctor,                     \
          CudaHardShrinkGradFunctor);                                         \
  __macro(swish, Swish, CudaSwishFunctor, CudaSwishGradFunctor);              \
1011
  __macro(mish, Mish, CudaMishFunctor, CudaMishGradFunctor);                  \
1012 1013 1014
  __macro(hard_swish, HardSwish, CudaHardSwishFunctor,                        \
          CudaHardSwishGradFunctor);
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
1015 1016

#ifdef PADDLE_WITH_XPU_KP
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
REGISTER_OP_KERNEL(
    brelu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaBReluFunctor<float>>);
REGISTER_OP_KERNEL(
    brelu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaBReluGradFunctor<float>>);

REGISTER_OP_KERNEL(ceil, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaCeilFunctor<float>>);
REGISTER_OP_KERNEL(
    ceil_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaZeroGradFunctor<float>>);

REGISTER_OP_KERNEL(celu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaCELUFunctor<float>>);
REGISTER_OP_KERNEL(
    celu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaCELUGradFunctor<float>>);

REGISTER_OP_KERNEL(elu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaELUFunctor<float>>);
REGISTER_OP_KERNEL(
    elu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaELUGradFunctor<float>>);

REGISTER_OP_KERNEL(exp, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaExpFunctor<float>>);
REGISTER_OP_KERNEL(
    exp_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaExpGradFunctor<float>>);

REGISTER_OP_KERNEL(floor, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaFloorFunctor<float>>);
REGISTER_OP_KERNEL(
    floor_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaZeroGradFunctor<float>>);

REGISTER_OP_KERNEL(
    hard_shrink, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaHardShrinkFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_shrink_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardShrinkGradFunctor<float>>);

REGISTER_OP_KERNEL(
    hard_sigmoid, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaHardSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_sigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(hard_swish, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaHardSwishFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_swish_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardSwishGradFunctor<float>>);

REGISTER_OP_KERNEL(
    leaky_relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaLeakyReluFunctor<float>>);
REGISTER_OP_KERNEL(
    leaky_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaLeakyReluGradFunctor<float>>);

REGISTER_OP_KERNEL(log, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaLogFunctor<float>>);
REGISTER_OP_KERNEL(
    log_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLogGradFunctor<float>>);

REGISTER_OP_KERNEL(log1p, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaLog1pFunctor<float>>);
REGISTER_OP_KERNEL(
    log1p_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLog1pGradFunctor<float>>);

REGISTER_OP_KERNEL(
    logsigmoid, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaLogSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    logsigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLogSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(
    reciprocal, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaReciprocalFunctor<float>>);
REGISTER_OP_KERNEL(
    reciprocal_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaReciprocalGradFunctor<float>>);

REGISTER_OP_KERNEL(
    relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaReluFunctor<float>>);
REGISTER_OP_KERNEL(
    relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaReluGradFunctor<float>>);

REGISTER_OP_KERNEL(relu6, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaRelu6Functor<float>>);
REGISTER_OP_KERNEL(
    relu6_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaRelu6GradFunctor<float>>);

REGISTER_OP_KERNEL(sigmoid, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    sigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(silu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSiluFunctor<float>>);
REGISTER_OP_KERNEL(
    silu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSiluGradFunctor<float>>);

REGISTER_OP_KERNEL(soft_relu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftReluFunctor<float>>);
REGISTER_OP_KERNEL(
    soft_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftReluGradFunctor<float>>);

REGISTER_OP_KERNEL(softplus, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftplusFunctor<float>>);
REGISTER_OP_KERNEL(
    softplus_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftplusGradFunctor<float>>);

REGISTER_OP_KERNEL(
    softshrink, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaSoftShrinkFunctor<float>>);
REGISTER_OP_KERNEL(
    softshrink_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftShrinkGradFunctor<float>>);

REGISTER_OP_KERNEL(softsign, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftsignFunctor<float>>);
REGISTER_OP_KERNEL(
    softsign_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftsignGradFunctor<float>>);

REGISTER_OP_KERNEL(sqrt, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSqrtFunctor<float>>);
REGISTER_OP_KERNEL(
    sqrt_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSqrtGradFunctor<float>>);

REGISTER_OP_KERNEL(square, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSquareFunctor<float>>);
REGISTER_OP_KERNEL(
    square_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSquareGradFunctor<float>>);

REGISTER_OP_KERNEL(swish, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSwishFunctor<float>>);
REGISTER_OP_KERNEL(
    swish_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSwishGradFunctor<float>>);

REGISTER_OP_KERNEL(
    thresholded_relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaThresholdedReluFunctor<float>>);
REGISTER_OP_KERNEL(
    thresholded_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaThresholdedReluGradFunctor<float>>);
1233 1234

#endif  // PADDLE_WITH_XPU_KP