activation_op.kps 54.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
liaogang 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/activation_op.h"
13 14
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
15
#include "paddle/fluid/platform/bfloat16.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
17

18 19
#include "paddle/phi/kernels/funcs/activation_functor.h"

20 21 22 23
namespace paddle {
namespace operators {

template <typename T>
24 25 26 27 28
struct CudaSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // sigmoid(x) = 1 / (1 + exp(-x))
29
  __device__ __forceinline__ T operator()(const T arg_x) const {
30
    MPType x = static_cast<MPType>(arg_x);
31 32 33
    return static_cast<T>(one / (one + exp(-x)));
  }
};
34

35 36 37 38 39
template <typename T>
struct CudaSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout * out * (1 - out)
40
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
41
    return dout * out * (one - out);
42
  }
43

44 45 46
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
47 48
};

49 50 51 52 53 54 55 56 57
template <typename T>
struct CudaLogSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // logsigmoid(x) = log(1 / (1 + exp(-x)))
  // For numerical stability,
  // logsigmoid(x) =
  //          - (max(-x, 0) + log(exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
58
  __device__ __forceinline__ T operator()(const T arg_x) const {
59
    MPType x = static_cast<MPType>(arg_x);
60 61 62 63
    MPType temp = x > zero ? zero : -x;
    return static_cast<T>(-temp - log(exp(-temp) + exp(-x - temp)));
  }
};
64 65

template <typename T>
66 67 68 69 70 71 72 73
struct CudaLogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // dx = dout * exp(-x) / (1 + exp(-x))
  // For numerical stability:
  // dx = dout * exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) + exp(-x - max(-x,
  // 0)))
74 75
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
76 77
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
78 79 80 81
    MPType temp1 = x > zero ? zero : -x;
    MPType temp2 = exp(-x - temp1);
    return static_cast<T>(dout * (temp2 / (exp(-temp1) + temp2)));
  }
82

83
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
84 85 86 87 88 89 90
};

template <typename T>
struct CudaCeilFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // ceil(x) = ceil(x)
91
  __device__ __forceinline__ T operator()(const T arg_x) const {
92
    MPType x = static_cast<MPType>(arg_x);
93 94 95 96 97 98 99 100 101
    return static_cast<T>(ceil(x));
  }
};

template <typename T>
struct CudaFloorFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // floor(x) = floor(x)
102
  __device__ __forceinline__ T operator()(const T arg_x) const {
103
    MPType x = static_cast<MPType>(arg_x);
104 105 106 107 108 109 110 111 112
    return static_cast<T>(floor(x));
  }
};

template <typename T>
struct CudaRoundFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // round(x) = round(x)
113
  __device__ __forceinline__ T operator()(const T arg_x) const {
114
    MPType x = static_cast<MPType>(arg_x);
115 116 117 118
    return static_cast<T>(round(x));
  }
};

119
// GradFunctor for ceil, floor and round
120 121
template <typename T>
struct CudaZeroGradFunctor : public BaseActivationFunctor<T> {
122
  __device__ __forceinline__ T operator()(const T x) const {
123 124 125
    return static_cast<T>(0.0f);
  }

126 127
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
128 129 130 131 132 133 134 135
  }
};

template <typename T>
struct CudaReciprocalFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // reciprocal(x) = 1 / x
136
  __device__ __forceinline__ T operator()(const T x) const { return one / x; }
137
};
138

139
template <typename T>
140 141
struct CudaReciprocalGradFunctor : public BaseActivationFunctor<T> {
  // dx = -dout * out^2
142
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
143
    return -dout * out * out;
144
  }
145

146 147 148
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
149
};
150

151 152 153 154 155
template <typename T>
struct CudaExpFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // exp(x) = exp(x)
156
  __device__ __forceinline__ T operator()(const T arg_x) const {
157
    MPType x = static_cast<MPType>(arg_x);
158 159 160
    return static_cast<T>(exp(x));
  }
};
161 162

template <typename T>
163 164
struct CudaExpGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
165
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
166
    return dout * out;
167
  }
168

169 170 171
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
172
};
173

R
ronnywang 已提交
174 175 176 177 178
template <typename T>
struct CudaExpm1Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // expm1(x) = expm1(x)
179
  __device__ __forceinline__ T operator()(const T arg_x) const {
180
    MPType x = static_cast<MPType>(arg_x);
R
ronnywang 已提交
181 182 183 184 185 186 187
    return static_cast<T>(expm1(x));
  }
};

template <typename T>
struct CudaExpm1GradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
188
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
189
    return dout * out + dout;
R
ronnywang 已提交
190 191
  }

192 193 194
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
195 196
};

197 198 199 200 201
template <typename T>
struct CudaLogFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log(x) = log(x)
202
  __device__ __forceinline__ T operator()(const T arg_x) const {
203
    MPType x = static_cast<MPType>(arg_x);
204 205 206 207 208 209 210
    return static_cast<T>(log(x));
  }
};

template <typename T>
struct CudaLogGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout / x
211
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
212
    return dout / x;
213 214
  }

215
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
216 217 218 219 220
};

template <typename T>
struct CudaSquareFunctor : public BaseActivationFunctor<T> {
  // square(x) = x * x
221
  __device__ __forceinline__ T operator()(const T x) const { return x * x; }
222
};
223

224 225 226 227 228
template <typename T>
struct CudaSquareGradFunctor : public BaseActivationFunctor<T> {
  T two = static_cast<T>(2.0f);

  // dx = dout * 2 * x
229
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
230
    return dout * two * x;
231 232
  }

233
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
234 235
};

236 237 238 239 240
template <typename T>
struct CudaSqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // sqrt(x) = sqrt(x)
241
  __device__ __forceinline__ T operator()(const T arg_x) const {
242
    MPType x = static_cast<MPType>(arg_x);
243 244 245
    return static_cast<T>(sqrt(x));
  }
};
246

247 248 249 250 251
template <typename T>
struct CudaSqrtGradFunctor : public BaseActivationFunctor<T> {
  T one_half = static_cast<T>(0.5f);

  // dx = dout * 0.5 / out
252
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
253
    return one_half * dout / out;
254 255
  }

256 257 258
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
259
};
260

261 262 263 264 265
template <typename T>
struct CudaRsqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // rsqrt(x) = rsqrt(x)
266
  __device__ __forceinline__ T operator()(const T arg_x) const {
267
    MPType x = static_cast<MPType>(arg_x);
268 269 270 271 272 273 274 275
    return static_cast<T>(rsqrt(x));
  }
};

template <typename T>
struct CudaRsqrtGradFunctor : public BaseActivationFunctor<T> {
  T minus_one_half = static_cast<T>(-0.5f);

276
  // dx = -0.5 * dout * out^3
277
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
278
    return minus_one_half * dout * out * out * out;
279 280
  }

281 282 283
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
284
};
285

286 287 288 289 290 291
template <typename T>
struct CudaLog1pFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // log1p(x) = log(1 + x)
292
  __device__ __forceinline__ T operator()(const T arg_x) const {
293
    MPType x = static_cast<MPType>(arg_x);
294 295 296 297 298 299 300 301 302
    return static_cast<T>(log(one + x));
  }
};

template <typename T>
struct CudaLog1pGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + x)
303
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
304
    return dout / (one + x);
305 306
  }

307
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
308 309 310 311 312 313 314
};

template <typename T>
struct CudaLog2Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log2(x) = log2(x)
315
  __device__ __forceinline__ T operator()(const T arg_x) const {
316
    MPType x = static_cast<MPType>(arg_x);
317 318 319 320 321 322 323 324 325 326
    return static_cast<T>(log2(x));
  }
};

template <typename T>
struct CudaLog2GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_two = static_cast<T>(log(static_cast<MPType>(2.0f)));

  // dx = dout / (x * log(2))
327
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
328
    return dout / (x * log_two);
329 330
  }

331
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
332 333 334 335 336 337 338
};

template <typename T>
struct CudaLog10Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log10(x) = log10(x)
339
  __device__ __forceinline__ T operator()(const T arg_x) const {
340
    MPType x = static_cast<MPType>(arg_x);
341 342 343 344 345 346 347 348 349 350
    return static_cast<T>(log10(x));
  }
};

template <typename T>
struct CudaLog10GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_ten = static_cast<T>(log(static_cast<MPType>(10.0f)));

  // dx = dout / (x * log(10))
351
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
352
    return dout / (x * log_ten);
353 354
  }

355
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
356 357 358 359 360 361 362 363 364 365 366 367 368 369
};

template <typename T>
struct CudaSoftReluFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // soft_relu(x) = log(1 + exp(max(min(x, threshold), -threshold)))
  // threshold should not be negative
370
  __device__ __forceinline__ T operator()(const T arg_x) const {
371
    MPType x = static_cast<MPType>(arg_x);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    MPType t = static_cast<MPType>(threshold);
    MPType temp_min = x < t ? x : t;
    MPType temp_max = temp_min > -t ? temp_min : -t;
    return static_cast<T>(log(one + exp(temp_max)));
  }
};

template <typename T>
struct CudaSoftReluGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > -threshold && out < threshold) ? dout * (1 - exp(-out)) : 0
  // threshold should not be negative
391 392
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_out) const {
393 394
    MPType dout = static_cast<MPType>(arg_dout);
    MPType out = static_cast<MPType>(arg_out);
395 396 397 398 399
    MPType t = static_cast<MPType>(threshold);
    return (out > -t && out < t) ? static_cast<T>(dout * (one - exp(-out)))
                                 : static_cast<T>(0.0f);
  }

400 401 402
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
403 404 405 406 407 408 409 410 411 412 413 414 415
};

template <typename T>
struct CudaSTanhFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // stanh(x) = b * tanh(a * x)
416
  __device__ __forceinline__ T operator()(const T arg_x) const {
417
    MPType x = static_cast<MPType>(arg_x);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    return static_cast<T>(b * tanh(a * x));
  }
};

template <typename T>
struct CudaSTanhGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // dx = dout * a * b * (1 - tanh(a * x) * tanh(a * x))
436 437
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
438 439
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
440 441 442 443 444 445
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    MPType temp = tanh(a * x);
    return static_cast<T>(dout * a * b * (one - temp * temp));
  }

446
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
447 448 449 450 451 452 453 454 455 456 457 458 459 460
};

template <typename T>
struct CudaSoftplusFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // softplus(x) = beta * x > threshold ? x : log(1 + exp(beta * x)) / beta
461
  __device__ __forceinline__ T operator()(const T arg_x) const {
462
    MPType x = static_cast<MPType>(arg_x);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
    return static_cast<T>(x_beta > t ? x : log(one + exp(x_beta)) / b);
  }
};

template <typename T>
struct CudaSoftplusGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // dx = x * beta > threshold ? dout : dout / (1 + exp(-beta * x))
482 483
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
484 485
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
486 487 488
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
489
    return x_beta > t ? arg_dout : static_cast<T>(dout / (one + exp(-x_beta)));
490 491
  }

492
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
493 494 495 496 497 498 499
};

template <typename T>
struct CudaSoftsignFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // softsign(x) = x / (1 + abs(x))
500
  __device__ __forceinline__ T operator()(const T x) const {
501
    return x / (one + abs(x));
502 503 504 505 506 507 508 509
  }
};

template <typename T>
struct CudaSoftsignGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + abs(x))^2
510
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
511 512
    T temp = one + abs(x);
    return dout / (temp * temp);
513 514
  }

515
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
516 517 518 519 520 521 522 523 524 525 526 527
};

template <typename T>
struct CudaRelu6Functor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // relu6(x) = min(max(0, x), 6)
528
  __device__ __forceinline__ T operator()(const T x) const {
529
    T t = static_cast<T>(threshold);
530
    return x <= zero ? zero : (x < t ? x : t);
531 532 533 534 535 536 537 538 539 540 541 542 543
  }
};

template <typename T>
struct CudaRelu6GradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > 0 && out < t) ? dout : 0
544
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
545
    T t = static_cast<T>(threshold);
546
    return (out > zero && out < t) ? dout : zero;
547 548
  }

549 550 551
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
};

template <typename T>
struct CudaHardSigmoidFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // hard_sigmoid(x) = 0, when x <= -3
  //                   1, when x >= 3
  //                   x * slope + offset, otherwise
568
  __device__ __forceinline__ T operator()(const T x) const {
569
    T temp = x * static_cast<T>(slope) + static_cast<T>(offset);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < one ? temp_max : one;
    return temp_min;
  }
};

template <typename T>
struct CudaHardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // dx = (out > 0 && out < 1) ? dout * slope : 0
588
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
589
    return (out > zero && out < one) ? dout * static_cast<T>(slope) : zero;
590 591
  }

592 593 594
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
595 596 597 598 599 600 601 602 603 604 605 606 607
};

template <typename T>
struct CudaSwishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // swish(x) = x / (1 + exp(-beta * x))
608
  __device__ __forceinline__ T operator()(const T arg_x) const {
609
    MPType x = static_cast<MPType>(arg_x);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    MPType b = static_cast<MPType>(beta);
    return static_cast<T>(x / (one + exp(-b * x)));
  }
};

template <typename T>
struct CudaSwishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // dx = dout * (1 + exp(-b * x) + b * x * exp(-b * x) / (1 + exp(-b * x))^2)
626 627
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
628 629
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
630 631 632 633 634 635 636 637
    MPType b = static_cast<MPType>(beta);
    MPType temp1 = one / (one + exp(-b * x));
    MPType out = x * temp1;
    MPType temp2 = b * out;
    MPType temp3 = temp1 * (one - temp2);
    return static_cast<T>(dout * (temp2 + temp3));
  }

638
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
639 640
};

641 642 643 644 645 646 647 648 649 650 651 652 653 654
template <typename T>
struct CudaMishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // mish(x) = x * tanh(softplus(x))
  // softplus(x) = x, if x > threshold
  //             = ln(1 + exp(x)), otherwise
  // Inputs: args[0], the input x
655
  __device__ __forceinline__ T operator()(const T arg_x) const {
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    return static_cast<T>(x * tanh(sp));
  }
};

template <typename T>
struct CudaMishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
  // sp = softplus(x)
  // Inputs: args[0], the input dout
  //         args[1], the input x
676 677
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
678 679 680 681 682 683 684 685 686
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    MPType gsp =
        (x > static_cast<MPType>(threshold)) ? one : one / (one + exp(-x));
    MPType tsp = tanh(sp);
    return static_cast<T>(dout * (tsp + x * (one - tsp * tsp) * gsp));
  }

687
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
688 689
};

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
template <typename T>
struct CudaHardSwishFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // hard_swish(x) = 0, when x <= -offset
  //                 x , when x >= threshold - offset
  //                 x * (x + offset) / scale, otherwise
  // threshold = scale = 6, offset = 3 by default
705
  __device__ __forceinline__ T operator()(const T x) const {
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    T t = static_cast<T>(threshold);
    T temp = x + static_cast<T>(offset);
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < t ? temp_max : t;
    return temp_min * x / static_cast<T>(scale);
  }
};

template <typename T>
struct CudaHardSwishGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  T two = static_cast<T>(2.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // dx = 0, when x <= -offset
  //      dout , when x >= threshold - offset
  //      dout * (2 * x / scale + offset / scale), otherwise
  // threshold = scale = 6, offset = 3 by default
731
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
732 733 734 735
    T o = static_cast<T>(offset);
    T s = static_cast<T>(scale);
    T temp1 = static_cast<T>(x + o > zero);
    T temp2 = static_cast<T>(x + o < static_cast<T>(threshold));
736
    return dout * (temp1 * temp2 * (two * x + o) / s + one - temp2);
737 738
  }

739
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
740 741
};

742 743 744 745 746 747 748 749 750 751 752 753
template <typename T>
struct CudaCELUFunctor : public BaseActivationFunctor<T> {
  using CT = typename details::MPTypeTrait<T>::Type;
  CT zero = static_cast<CT>(0.0f);
  CT one = static_cast<CT>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1))
754
  __device__ __forceinline__ T operator()(const T arg_x) const {
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
    CT x = static_cast<CT>(arg_x);
    CT temp = static_cast<CT>(alpha) * (exp(x / static_cast<CT>(alpha)) - one);
    CT res = (x > zero ? x : zero) + (temp > zero ? zero : temp);
    return static_cast<T>(res);
  }
};

template <typename T>
struct CudaCELUGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  MPType one = static_cast<MPType>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // dx = dout, if alpha > 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
  // dx = dout , if alpha < 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
777 778
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
779 780 781 782 783 784 785 786 787 788 789 790 791
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType a = static_cast<MPType>(alpha);
    MPType temp_a_pos = static_cast<MPType>(alpha > 0.0f);
    MPType temp_a_neg = static_cast<MPType>(alpha <= 0.0f);
    MPType temp_x_pos = static_cast<MPType>(x > zero);
    MPType temp_x_neg = static_cast<MPType>(x <= zero);
    return static_cast<T>(
        dout *
        (temp_a_pos * temp_x_pos + temp_a_pos * temp_x_neg * exp(x / a) +
         temp_a_neg * temp_x_pos + exp(x / a) * temp_a_neg * temp_x_neg));
  }

792
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
793 794
};

795
template <typename DeviceContext, typename Functor>
796
class ActivationCudaKernel
797 798 799
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
800 801
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor* x = nullptr;
802
    framework::Tensor* out = nullptr;
803 804 805 806 807 808
    ExtractActivationTensor(ctx, &x, &out);
    out->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::vector<const framework::Tensor*> ins = {x};
    std::vector<framework::Tensor*> outs = {out};
    auto functor = Functor();
809 810
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
811
      *attr.second = ctx.Attr<float>(attr.first);
812
    }
813 814
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
815 816 817 818
  }
};

template <typename DeviceContext, typename Functor>
819
class ActivationGradCudaKernel
820 821 822
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
823
  void Compute(const framework::ExecutionContext& ctx) const override {
824 825 826
    const framework::Tensor *x, *out, *d_out;
    framework::Tensor* d_x = nullptr;
    x = out = d_out = nullptr;
827
    ExtractActivationGradTensor<Functor::FwdDeps()>(ctx, &x, &out, &d_out,
828
                                                    &d_x);
829 830 831 832 833 834 835 836 837 838
    d_x->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto functor = Functor();
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }

    std::vector<const framework::Tensor*> ins = {d_out};
    std::vector<framework::Tensor*> outs = {d_x};
839

840 841
    if (static_cast<int>(Functor::FwdDeps()) ==
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
842
      // Only need forward output Out
843
      ins.push_back(out);
844 845
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
846
    } else if (static_cast<int>(Functor::FwdDeps()) ==
847
               static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
848
      // Only need forward input X
849
      ins.push_back(x);
850 851
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
852
    } else {
853 854
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
855 856 857 858
    }
  }
};

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
USE_PHI_FUNCTOR(CudaCos)
USE_PHI_FUNCTOR(CudaTan)
USE_PHI_FUNCTOR(CudaAcos)
USE_PHI_FUNCTOR(CudaSin)
USE_PHI_FUNCTOR(CudaAsin)
USE_PHI_FUNCTOR(CudaAtan)
USE_PHI_FUNCTOR(CudaSinh)
USE_PHI_FUNCTOR(CudaCosh)
USE_PHI_FUNCTOR(CudaAsinh)
USE_PHI_FUNCTOR(CudaAcosh)
USE_PHI_FUNCTOR(CudaAtanh)
USE_PHI_FUNCTOR(CudaTanh)
USE_PHI_FUNCTOR(CudaBRelu)
USE_PHI_FUNCTOR(CudaLeakyRelu)
USE_PHI_FUNCTOR(CudaThresholdedRelu)
Y
YuanRisheng 已提交
874 875 876 877 878 879 880 881 882
USE_PHI_FUNCTOR(CudaHardShrink)
USE_PHI_FUNCTOR(CudaSoftShrink)
USE_PHI_FUNCTOR(CudaTanhShrink)
USE_PHI_FUNCTOR(CudaSilu)
USE_PHI_FUNCTOR(CudaELU)

template <typename T>
using CudaELUGradNegativeAlphaFunctor =
    phi::funcs::CudaELUGradNegativeAlphaFunctor<T>;
883

884 885 886
}  // namespace operators
}  // namespace paddle

887
namespace ops = paddle::operators;
888 889
namespace plat = paddle::platform;

890 891
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor,            \
                                        grad_functor)                          \
892
  REGISTER_OP_CUDA_KERNEL(                                                     \
893 894 895 896 897
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
898 899 900
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
901
  REGISTER_OP_CUDA_KERNEL(                                                     \
902 903 904 905 906 907
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
908 909 910
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
911

912 913 914 915 916 917 918 919 920 921 922 923
#define REGISTER_ACTIVATION_CUDA_KERNEL_INT(act_type, op_name, functor,        \
                                            grad_functor)                      \
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int>>,                            \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int64_t>>,                        \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
924 925 926
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
927 928 929 930 931 932 933 934 935 936 937
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int>>,                   \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int64_t>>,               \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
938 939 940
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
941

D
Double_V 已提交
942 943
/* ========================================================================== */

944 945 946 947 948 949 950 951 952 953 954 955 956
/* ======================== celu register  ============================ */
REGISTER_ACTIVATION_CUDA_KERNEL(celu, CELU, CudaCELUFunctor,
                                CudaCELUGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);
/* ========================================================================== */

957 958 959 960 961 962 963 964 965 966 967 968
/* ===========================    sigmoid register  ============================
 */
REGISTER_ACTIVATION_CUDA_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
                                CudaSigmoidGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
969 970 971
                                 ops::SigmoidGradGradFunctor<plat::float16>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::bfloat16>>);
972 973 974 975 976 977 978 979

REGISTER_OP_CUDA_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CUDADeviceContext,
980 981 982 983
                                 ops::SigmoidTripleGradFunctor<plat::float16>>,
    ops::SigmoidTripleGradKernel<
        plat::CUDADeviceContext,
        ops::SigmoidTripleGradFunctor<plat::bfloat16>>);
984 985
/* ========================================================================== */

L
lvmengsi 已提交
986
/* ===========================   sqrt register  ============================= */
987 988
REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                                CudaSqrtGradFunctor);
L
lvmengsi 已提交
989 990 991 992 993 994 995 996

REGISTER_OP_CUDA_KERNEL(
    sqrt_grad_grad,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
997 998 999
                              ops::SqrtGradGradFunctor<plat::float16>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<plat::bfloat16>>);
L
lvmengsi 已提交
1000 1001
/* ========================================================================== */

W
whs 已提交
1002 1003
/* ===========================   rsqrt register  =============================
 */
1004 1005
REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, CudaRsqrtFunctor,
                                CudaRsqrtGradFunctor);
W
whs 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

REGISTER_OP_CUDA_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1017
/* ===========================  square register  ============================ */
1018 1019
REGISTER_ACTIVATION_CUDA_KERNEL_INT(square, Square, CudaSquareFunctor,
                                    CudaSquareGradFunctor);
1020 1021 1022 1023 1024 1025 1026 1027

REGISTER_OP_CUDA_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
1028
                                ops::SquareGradGradFunctor<plat::float16>>,
1029 1030
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
                                ops::SquareGradGradFunctor<plat::bfloat16>>,
1031 1032 1033 1034
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1035
/* ========================================================================== */
1036 1037 1038 1039 1040

/* ==========================   pow register  ============================ */
REGISTER_OP_CUDA_KERNEL(
    pow, ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<float>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<double>>,
1041 1042
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int64_t>>,
1043 1044 1045 1046 1047
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<float>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<double>>,
1048 1049
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int64_t>>,
1050 1051 1052
    ops::PowGradKernel<plat::CUDADeviceContext,
                       ops::PowGradFunctor<plat::float16>>);
/* ========================================================================== */
1053

W
wangzhen38 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/* ==========================   logit register  ============================ */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    logit_grad,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>);
/* ========================================================================== */

1069 1070
/* ==========================   exp register  ============================ */
REGISTER_OP_CUDA_KERNEL(
1071 1072 1073 1074
    exp, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                   ops::CudaExpFunctor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<double>>,
1075 1076
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int>>,
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int64_t>>,
1077 1078
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<plat::float16>>);
1079
REGISTER_OP_CUDA_KERNEL(
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    exp_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                            ops::CudaExpGradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int64_t>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<plat::float16>>);
1090 1091
/* ========================================================================== */

R
ronnywang 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/* ==========================   expm1 register  ============================ */

REGISTER_OP_CUDA_KERNEL(
    expm1, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                     ops::CudaExpm1Functor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<double>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    expm1_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                              ops::CudaExpm1GradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<plat::float16>>);
/* ========================================================================== */

1110
/* ==========================  Log register ==================================*/
1111
REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
1112 1113 1114 1115 1116 1117 1118 1119 1120

REGISTER_OP_CUDA_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#define FOR_EACH_ACTIVATION_CUDA_OP(__macro)                                  \
  __macro(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,                      \
          CudaLogSigmoidGradFunctor);                                         \
  __macro(softshrink, SoftShrink, CudaSoftShrinkFunctor,                      \
          CudaSoftShrinkGradFunctor);                                         \
  __macro(ceil, Ceil, CudaCeilFunctor, CudaZeroGradFunctor);                  \
  __macro(floor, Floor, CudaFloorFunctor, CudaZeroGradFunctor);               \
  __macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor);               \
  __macro(reciprocal, Reciprocal, CudaReciprocalFunctor,                      \
          CudaReciprocalGradFunctor);                                         \
  __macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor);              \
  __macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor);                  \
  __macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor);              \
  __macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \
  __macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor);              \
  __macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor);  \
  __macro(softsign, Softsign, CudaSoftsignFunctor, CudaSoftsignGradFunctor);  \
  __macro(relu6, Relu6, CudaRelu6Functor, CudaRelu6GradFunctor);              \
  __macro(tanh_shrink, TanhShrink, CudaTanhShrinkFunctor,                     \
          CudaTanhShrinkGradFunctor);                                         \
  __macro(hard_shrink, HardShrink, CudaHardShrinkFunctor,                     \
          CudaHardShrinkGradFunctor);                                         \
  __macro(hard_sigmoid, HardSigmoid, CudaHardSigmoidFunctor,                  \
          CudaHardSigmoidGradFunctor);                                        \
  __macro(swish, Swish, CudaSwishFunctor, CudaSwishGradFunctor);              \
1147
  __macro(mish, Mish, CudaMishFunctor, CudaMishGradFunctor);                  \
1148 1149 1150
  __macro(hard_swish, HardSwish, CudaHardSwishFunctor,                        \
          CudaHardSwishGradFunctor);
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
1151 1152

#ifdef PADDLE_WITH_XPU_KP
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
REGISTER_OP_KERNEL(
    brelu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaBReluFunctor<float>>);
REGISTER_OP_KERNEL(
    brelu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaBReluGradFunctor<float>>);

REGISTER_OP_KERNEL(ceil, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaCeilFunctor<float>>);
REGISTER_OP_KERNEL(
    ceil_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaZeroGradFunctor<float>>);

REGISTER_OP_KERNEL(celu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaCELUFunctor<float>>);
REGISTER_OP_KERNEL(
    celu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaCELUGradFunctor<float>>);

REGISTER_OP_KERNEL(elu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaELUFunctor<float>>);
REGISTER_OP_KERNEL(
    elu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaELUGradFunctor<float>>);

REGISTER_OP_KERNEL(exp, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaExpFunctor<float>>);
REGISTER_OP_KERNEL(
    exp_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaExpGradFunctor<float>>);

REGISTER_OP_KERNEL(floor, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaFloorFunctor<float>>);
REGISTER_OP_KERNEL(
    floor_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaZeroGradFunctor<float>>);

REGISTER_OP_KERNEL(
    hard_shrink, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaHardShrinkFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_shrink_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardShrinkGradFunctor<float>>);

REGISTER_OP_KERNEL(
    hard_sigmoid, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaHardSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_sigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(hard_swish, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaHardSwishFunctor<float>>);
REGISTER_OP_KERNEL(
    hard_swish_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaHardSwishGradFunctor<float>>);

REGISTER_OP_KERNEL(
    leaky_relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaLeakyReluFunctor<float>>);
REGISTER_OP_KERNEL(
    leaky_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaLeakyReluGradFunctor<float>>);

REGISTER_OP_KERNEL(log, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaLogFunctor<float>>);
REGISTER_OP_KERNEL(
    log_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLogGradFunctor<float>>);

REGISTER_OP_KERNEL(log1p, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaLog1pFunctor<float>>);
REGISTER_OP_KERNEL(
    log1p_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLog1pGradFunctor<float>>);

REGISTER_OP_KERNEL(
    logsigmoid, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaLogSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    logsigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaLogSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(
    reciprocal, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaReciprocalFunctor<float>>);
REGISTER_OP_KERNEL(
    reciprocal_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaReciprocalGradFunctor<float>>);

REGISTER_OP_KERNEL(
    relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              phi::funcs::CudaReluFunctor<float>>);
REGISTER_OP_KERNEL(
    relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  phi::funcs::CudaReluGradFunctor<float>>);

REGISTER_OP_KERNEL(relu6, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaRelu6Functor<float>>);
REGISTER_OP_KERNEL(
    relu6_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaRelu6GradFunctor<float>>);

REGISTER_OP_KERNEL(sigmoid, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
    sigmoid_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSigmoidGradFunctor<float>>);

REGISTER_OP_KERNEL(silu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSiluFunctor<float>>);
REGISTER_OP_KERNEL(
    silu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSiluGradFunctor<float>>);

REGISTER_OP_KERNEL(soft_relu, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftReluFunctor<float>>);
REGISTER_OP_KERNEL(
    soft_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftReluGradFunctor<float>>);

REGISTER_OP_KERNEL(softplus, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftplusFunctor<float>>);
REGISTER_OP_KERNEL(
    softplus_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftplusGradFunctor<float>>);

REGISTER_OP_KERNEL(
    softshrink, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaSoftShrinkFunctor<float>>);
REGISTER_OP_KERNEL(
    softshrink_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftShrinkGradFunctor<float>>);

REGISTER_OP_KERNEL(softsign, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSoftsignFunctor<float>>);
REGISTER_OP_KERNEL(
    softsign_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSoftsignGradFunctor<float>>);

REGISTER_OP_KERNEL(sqrt, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSqrtFunctor<float>>);
REGISTER_OP_KERNEL(
    sqrt_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSqrtGradFunctor<float>>);

REGISTER_OP_KERNEL(square, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSquareFunctor<float>>);
REGISTER_OP_KERNEL(
    square_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSquareGradFunctor<float>>);

REGISTER_OP_KERNEL(swish, KP, plat::XPUPlace,
                   ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                                             ops::CudaSwishFunctor<float>>);
REGISTER_OP_KERNEL(
    swish_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaSwishGradFunctor<float>>);

REGISTER_OP_KERNEL(
    thresholded_relu, KP, plat::XPUPlace,
    ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
                              ops::CudaThresholdedReluFunctor<float>>);
REGISTER_OP_KERNEL(
    thresholded_relu_grad, KP, plat::XPUPlace,
    ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
                                  ops::CudaThresholdedReluGradFunctor<float>>);
1369 1370

#endif  // PADDLE_WITH_XPU_KP