activation_op.kps 56.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
liaogang 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/activation_op.h"
13 14
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
15
#include "paddle/fluid/platform/bfloat16.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
17

18 19 20 21
namespace paddle {
namespace operators {

template <typename T>
22 23 24 25 26
struct CudaSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // sigmoid(x) = 1 / (1 + exp(-x))
27
  __device__ __forceinline__ T operator()(const T arg_x) const {
28
    MPType x = static_cast<MPType>(arg_x);
29 30 31
    return static_cast<T>(one / (one + exp(-x)));
  }
};
32

33 34 35 36 37
template <typename T>
struct CudaSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout * out * (1 - out)
38
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
39
    return dout * out * (one - out);
40
  }
41

42 43 44
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
45 46
};

47 48 49 50 51 52
template <typename T>
struct CudaSiluFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // silu(x) = x / (1 + exp(-x))
53
  __device__ __forceinline__ T operator()(const T arg_x) const {
54
    MPType x = static_cast<MPType>(arg_x);
55 56 57
    return static_cast<T>(x / (one + exp(-x)));
  }
};
58 59

template <typename T>
60 61 62 63 64
struct CudaSiluGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // dx = dout * (1 + exp(-x) + x * exp(-x) / (1 + exp(-x))^2)
65 66
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
67 68
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
69 70 71
    MPType temp = one / (one + exp(-x));
    return static_cast<T>(dout * (temp * (one + x * (one - temp))));
  }
72

73
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
74
};
75

76 77 78 79 80 81 82 83 84
template <typename T>
struct CudaLogSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // logsigmoid(x) = log(1 / (1 + exp(-x)))
  // For numerical stability,
  // logsigmoid(x) =
  //          - (max(-x, 0) + log(exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
85
  __device__ __forceinline__ T operator()(const T arg_x) const {
86
    MPType x = static_cast<MPType>(arg_x);
87 88 89 90
    MPType temp = x > zero ? zero : -x;
    return static_cast<T>(-temp - log(exp(-temp) + exp(-x - temp)));
  }
};
91 92

template <typename T>
93 94 95 96 97 98 99 100
struct CudaLogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // dx = dout * exp(-x) / (1 + exp(-x))
  // For numerical stability:
  // dx = dout * exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) + exp(-x - max(-x,
  // 0)))
101 102
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
103 104
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
105 106 107 108
    MPType temp1 = x > zero ? zero : -x;
    MPType temp2 = exp(-x - temp1);
    return static_cast<T>(dout * (temp2 / (exp(-temp1) + temp2)));
  }
109

110
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
111 112 113 114 115 116 117 118 119 120 121 122 123
};

template <typename T>
struct CudaSoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

  // softshrink(x) = x - lambda, if x > lambda;
  //                 x + lambda, if x < -lambda;
  //                 0, otherwise.
124
  __device__ __forceinline__ T operator()(const T x) const {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    T l = static_cast<T>(lambda);
    T temp1 = static_cast<T>(x > l);
    T temp2 = static_cast<T>(x < -l);
    return temp1 * (x - l) + temp2 * (x + l);
  }
};

template <typename T>
struct CudaSoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float lambda;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

  // dx = dout, if x > lambda or x < -lambda else 0
142
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
143
    T l = static_cast<T>(lambda);
144
    return (x >= -l && x <= l) ? zero : dout;
145 146
  }

147
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
148 149 150 151 152 153 154
};

template <typename T>
struct CudaCeilFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // ceil(x) = ceil(x)
155
  __device__ __forceinline__ T operator()(const T arg_x) const {
156
    MPType x = static_cast<MPType>(arg_x);
157 158 159 160 161 162 163 164 165
    return static_cast<T>(ceil(x));
  }
};

template <typename T>
struct CudaFloorFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // floor(x) = floor(x)
166
  __device__ __forceinline__ T operator()(const T arg_x) const {
167
    MPType x = static_cast<MPType>(arg_x);
168 169 170 171 172 173 174 175 176
    return static_cast<T>(floor(x));
  }
};

template <typename T>
struct CudaRoundFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // round(x) = round(x)
177
  __device__ __forceinline__ T operator()(const T arg_x) const {
178
    MPType x = static_cast<MPType>(arg_x);
179 180 181 182
    return static_cast<T>(round(x));
  }
};

183
// GradFunctor for ceil, floor and round
184 185
template <typename T>
struct CudaZeroGradFunctor : public BaseActivationFunctor<T> {
186
  __device__ __forceinline__ T operator()(const T x) const {
187 188 189
    return static_cast<T>(0.0f);
  }

190 191
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
192 193 194 195 196 197 198 199
  }
};

template <typename T>
struct CudaReciprocalFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // reciprocal(x) = 1 / x
200
  __device__ __forceinline__ T operator()(const T x) const { return one / x; }
201
};
202

203
template <typename T>
204 205
struct CudaReciprocalGradFunctor : public BaseActivationFunctor<T> {
  // dx = -dout * out^2
206
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
207
    return -dout * out * out;
208
  }
209

210 211 212
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
213
};
214

215 216 217 218 219
template <typename T>
struct CudaExpFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // exp(x) = exp(x)
220
  __device__ __forceinline__ T operator()(const T arg_x) const {
221
    MPType x = static_cast<MPType>(arg_x);
222 223 224
    return static_cast<T>(exp(x));
  }
};
225 226

template <typename T>
227 228
struct CudaExpGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
229
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
230
    return dout * out;
231
  }
232

233 234 235
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
236
};
237

R
ronnywang 已提交
238 239 240 241 242
template <typename T>
struct CudaExpm1Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // expm1(x) = expm1(x)
243
  __device__ __forceinline__ T operator()(const T arg_x) const {
244
    MPType x = static_cast<MPType>(arg_x);
R
ronnywang 已提交
245 246 247 248 249 250 251
    return static_cast<T>(expm1(x));
  }
};

template <typename T>
struct CudaExpm1GradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
252
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
253
    return dout * out + dout;
R
ronnywang 已提交
254 255
  }

256 257 258
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
259 260
};

261 262 263 264 265
template <typename T>
struct CudaLogFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log(x) = log(x)
266
  __device__ __forceinline__ T operator()(const T arg_x) const {
267
    MPType x = static_cast<MPType>(arg_x);
268 269 270 271 272 273 274
    return static_cast<T>(log(x));
  }
};

template <typename T>
struct CudaLogGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout / x
275
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
276
    return dout / x;
277 278
  }

279
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
280 281 282 283 284
};

template <typename T>
struct CudaSquareFunctor : public BaseActivationFunctor<T> {
  // square(x) = x * x
285
  __device__ __forceinline__ T operator()(const T x) const { return x * x; }
286
};
287

288 289 290 291 292
template <typename T>
struct CudaSquareGradFunctor : public BaseActivationFunctor<T> {
  T two = static_cast<T>(2.0f);

  // dx = dout * 2 * x
293
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
294
    return dout * two * x;
295 296
  }

297
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
298 299
};

300 301 302 303 304
template <typename T>
struct CudaSqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // sqrt(x) = sqrt(x)
305
  __device__ __forceinline__ T operator()(const T arg_x) const {
306
    MPType x = static_cast<MPType>(arg_x);
307 308 309
    return static_cast<T>(sqrt(x));
  }
};
310

311 312 313 314 315
template <typename T>
struct CudaSqrtGradFunctor : public BaseActivationFunctor<T> {
  T one_half = static_cast<T>(0.5f);

  // dx = dout * 0.5 / out
316
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
317
    return one_half * dout / out;
318 319
  }

320 321 322
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
323
};
324

325 326 327 328 329
template <typename T>
struct CudaRsqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // rsqrt(x) = rsqrt(x)
330
  __device__ __forceinline__ T operator()(const T arg_x) const {
331
    MPType x = static_cast<MPType>(arg_x);
332 333 334 335 336 337 338 339
    return static_cast<T>(rsqrt(x));
  }
};

template <typename T>
struct CudaRsqrtGradFunctor : public BaseActivationFunctor<T> {
  T minus_one_half = static_cast<T>(-0.5f);

340
  // dx = -0.5 * dout * out^3
341
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
342
    return minus_one_half * dout * out * out * out;
343 344
  }

345 346 347
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
348
};
349

350 351 352 353 354 355
template <typename T>
struct CudaLog1pFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // log1p(x) = log(1 + x)
356
  __device__ __forceinline__ T operator()(const T arg_x) const {
357
    MPType x = static_cast<MPType>(arg_x);
358 359 360 361 362 363 364 365 366
    return static_cast<T>(log(one + x));
  }
};

template <typename T>
struct CudaLog1pGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + x)
367
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
368
    return dout / (one + x);
369 370
  }

371
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
372 373 374 375 376 377 378
};

template <typename T>
struct CudaLog2Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log2(x) = log2(x)
379
  __device__ __forceinline__ T operator()(const T arg_x) const {
380
    MPType x = static_cast<MPType>(arg_x);
381 382 383 384 385 386 387 388 389 390
    return static_cast<T>(log2(x));
  }
};

template <typename T>
struct CudaLog2GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_two = static_cast<T>(log(static_cast<MPType>(2.0f)));

  // dx = dout / (x * log(2))
391
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
392
    return dout / (x * log_two);
393 394
  }

395
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
396 397 398 399 400 401 402
};

template <typename T>
struct CudaLog10Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log10(x) = log10(x)
403
  __device__ __forceinline__ T operator()(const T arg_x) const {
404
    MPType x = static_cast<MPType>(arg_x);
405 406 407 408 409 410 411 412 413 414
    return static_cast<T>(log10(x));
  }
};

template <typename T>
struct CudaLog10GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_ten = static_cast<T>(log(static_cast<MPType>(10.0f)));

  // dx = dout / (x * log(10))
415
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
416
    return dout / (x * log_ten);
417 418
  }

419
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
420 421 422 423 424 425 426 427 428 429 430 431 432 433
};

template <typename T>
struct CudaSoftReluFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // soft_relu(x) = log(1 + exp(max(min(x, threshold), -threshold)))
  // threshold should not be negative
434
  __device__ __forceinline__ T operator()(const T arg_x) const {
435
    MPType x = static_cast<MPType>(arg_x);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    MPType t = static_cast<MPType>(threshold);
    MPType temp_min = x < t ? x : t;
    MPType temp_max = temp_min > -t ? temp_min : -t;
    return static_cast<T>(log(one + exp(temp_max)));
  }
};

template <typename T>
struct CudaSoftReluGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > -threshold && out < threshold) ? dout * (1 - exp(-out)) : 0
  // threshold should not be negative
455 456
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_out) const {
457 458
    MPType dout = static_cast<MPType>(arg_dout);
    MPType out = static_cast<MPType>(arg_out);
459 460 461 462 463
    MPType t = static_cast<MPType>(threshold);
    return (out > -t && out < t) ? static_cast<T>(dout * (one - exp(-out)))
                                 : static_cast<T>(0.0f);
  }

464 465 466
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
467 468 469 470 471 472 473 474 475 476 477 478 479
};

template <typename T>
struct CudaSTanhFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // stanh(x) = b * tanh(a * x)
480
  __device__ __forceinline__ T operator()(const T arg_x) const {
481
    MPType x = static_cast<MPType>(arg_x);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    return static_cast<T>(b * tanh(a * x));
  }
};

template <typename T>
struct CudaSTanhGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // dx = dout * a * b * (1 - tanh(a * x) * tanh(a * x))
500 501
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
502 503
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
504 505 506 507 508 509
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    MPType temp = tanh(a * x);
    return static_cast<T>(dout * a * b * (one - temp * temp));
  }

510
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
511 512 513 514 515 516 517 518 519 520 521 522 523 524
};

template <typename T>
struct CudaSoftplusFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // softplus(x) = beta * x > threshold ? x : log(1 + exp(beta * x)) / beta
525
  __device__ __forceinline__ T operator()(const T arg_x) const {
526
    MPType x = static_cast<MPType>(arg_x);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
    return static_cast<T>(x_beta > t ? x : log(one + exp(x_beta)) / b);
  }
};

template <typename T>
struct CudaSoftplusGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // dx = x * beta > threshold ? dout : dout / (1 + exp(-beta * x))
546 547
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
548 549
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
550 551 552
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
553
    return x_beta > t ? arg_dout : static_cast<T>(dout / (one + exp(-x_beta)));
554 555
  }

556
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
557 558 559 560 561 562 563
};

template <typename T>
struct CudaSoftsignFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // softsign(x) = x / (1 + abs(x))
564
  __device__ __forceinline__ T operator()(const T x) const {
565
    return x / (one + abs(x));
566 567 568 569 570 571 572 573
  }
};

template <typename T>
struct CudaSoftsignGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + abs(x))^2
574
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
575 576
    T temp = one + abs(x);
    return dout / (temp * temp);
577 578
  }

579
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
580 581 582 583 584 585 586 587 588 589 590 591
};

template <typename T>
struct CudaRelu6Functor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // relu6(x) = min(max(0, x), 6)
592
  __device__ __forceinline__ T operator()(const T x) const {
593
    T t = static_cast<T>(threshold);
594
    return x <= zero ? zero : (x < t ? x : t);
595 596 597 598 599 600 601 602 603 604 605 606 607
  }
};

template <typename T>
struct CudaRelu6GradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > 0 && out < t) ? dout : 0
608
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
609
    T t = static_cast<T>(threshold);
610
    return (out > zero && out < t) ? dout : zero;
611 612
  }

613 614 615
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
616 617 618 619 620 621 622
};

template <typename T>
struct CudaTanhShrinkFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // tanhshrink(x) = x - tanh(x)
623
  __device__ __forceinline__ T operator()(const T arg_x) const {
624
    MPType x = static_cast<MPType>(arg_x);
625 626 627 628 629 630 631 632 633
    return static_cast<T>(x - tanh(x));
  }
};

template <typename T>
struct CudaTanhShrinkGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // dx = dout * tanh(x)^2
634 635
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
636 637
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
638 639 640
    return static_cast<T>(dout * tanh(x) * tanh(x));
  }

641
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
642 643 644 645 646 647 648 649 650 651 652 653
};

template <typename T>
struct CudaHardShrinkFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // hadrshrink(x) = (x > -threshold && x < threshold) ? 0 : x
654
  __device__ __forceinline__ T operator()(const T x) const {
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    T t = static_cast<T>(threshold);
    return (x > -t && x < t) ? zero : x;
  }
};

template <typename T>
struct CudaHardShrinkGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (x > -threshold && x < threshold) ? 0 : dout
670
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
671
    T t = static_cast<T>(threshold);
672
    return (x > -t && x < t) ? zero : dout;
673 674
  }

675
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
};

template <typename T>
struct CudaHardSigmoidFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // hard_sigmoid(x) = 0, when x <= -3
  //                   1, when x >= 3
  //                   x * slope + offset, otherwise
692
  __device__ __forceinline__ T operator()(const T x) const {
693
    T temp = x * static_cast<T>(slope) + static_cast<T>(offset);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < one ? temp_max : one;
    return temp_min;
  }
};

template <typename T>
struct CudaHardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // dx = (out > 0 && out < 1) ? dout * slope : 0
712
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
713
    return (out > zero && out < one) ? dout * static_cast<T>(slope) : zero;
714 715
  }

716 717 718
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
719 720 721 722 723 724 725 726 727 728 729 730 731
};

template <typename T>
struct CudaSwishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // swish(x) = x / (1 + exp(-beta * x))
732
  __device__ __forceinline__ T operator()(const T arg_x) const {
733
    MPType x = static_cast<MPType>(arg_x);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
    MPType b = static_cast<MPType>(beta);
    return static_cast<T>(x / (one + exp(-b * x)));
  }
};

template <typename T>
struct CudaSwishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // dx = dout * (1 + exp(-b * x) + b * x * exp(-b * x) / (1 + exp(-b * x))^2)
750 751
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
752 753
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
754 755 756 757 758 759 760 761
    MPType b = static_cast<MPType>(beta);
    MPType temp1 = one / (one + exp(-b * x));
    MPType out = x * temp1;
    MPType temp2 = b * out;
    MPType temp3 = temp1 * (one - temp2);
    return static_cast<T>(dout * (temp2 + temp3));
  }

762
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
763 764
};

765 766 767 768 769 770 771 772 773 774 775 776 777 778
template <typename T>
struct CudaMishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // mish(x) = x * tanh(softplus(x))
  // softplus(x) = x, if x > threshold
  //             = ln(1 + exp(x)), otherwise
  // Inputs: args[0], the input x
779
  __device__ __forceinline__ T operator()(const T arg_x) const {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    return static_cast<T>(x * tanh(sp));
  }
};

template <typename T>
struct CudaMishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
  // sp = softplus(x)
  // Inputs: args[0], the input dout
  //         args[1], the input x
800 801
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
802 803 804 805 806 807 808 809 810
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    MPType gsp =
        (x > static_cast<MPType>(threshold)) ? one : one / (one + exp(-x));
    MPType tsp = tanh(sp);
    return static_cast<T>(dout * (tsp + x * (one - tsp * tsp) * gsp));
  }

811
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
812 813
};

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
template <typename T>
struct CudaHardSwishFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // hard_swish(x) = 0, when x <= -offset
  //                 x , when x >= threshold - offset
  //                 x * (x + offset) / scale, otherwise
  // threshold = scale = 6, offset = 3 by default
829
  __device__ __forceinline__ T operator()(const T x) const {
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    T t = static_cast<T>(threshold);
    T temp = x + static_cast<T>(offset);
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < t ? temp_max : t;
    return temp_min * x / static_cast<T>(scale);
  }
};

template <typename T>
struct CudaHardSwishGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  T two = static_cast<T>(2.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // dx = 0, when x <= -offset
  //      dout , when x >= threshold - offset
  //      dout * (2 * x / scale + offset / scale), otherwise
  // threshold = scale = 6, offset = 3 by default
855
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
856 857 858 859
    T o = static_cast<T>(offset);
    T s = static_cast<T>(scale);
    T temp1 = static_cast<T>(x + o > zero);
    T temp2 = static_cast<T>(x + o < static_cast<T>(threshold));
860
    return dout * (temp1 * temp2 * (two * x + o) / s + one - temp2);
861 862
  }

863
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
864 865 866 867 868 869 870 871 872 873 874 875 876
};

template <typename T>
struct CudaELUFunctor : public BaseActivationFunctor<T> {
  using CT = typename details::MPTypeTrait<T>::Type;
  CT zero = static_cast<CT>(0.0f);
  CT one = static_cast<CT>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

Z
zhupengyang 已提交
877 878
  // elu(x) = x, if x > 0
  // elu(x) = alpha * (e^x - 1), if x <= 0
879
  __device__ __forceinline__ T operator()(const T arg_x) const {
880
    CT x = static_cast<CT>(arg_x);
881
    CT temp = static_cast<CT>(alpha) * (exp(x) - one);
Z
zhupengyang 已提交
882
    CT res = x > zero ? x : temp;
883 884 885 886 887 888 889 890 891 892 893 894 895 896
    return static_cast<T>(res);
  }
};

template <typename T>
struct CudaELUGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

Z
zhupengyang 已提交
897 898 899
  // case 1: alpha >= 0
  // dx = dout, if out > 0
  // dx = dout * (out + alpha), if out <= 0
900
  __device__ __forceinline__ T operator()(T arg_dout, T arg_out) const {
Z
zhupengyang 已提交
901 902 903 904 905 906 907 908
    MPType dout = static_cast<MPType>(arg_dout);
    MPType out = static_cast<MPType>(arg_out);
    MPType a = static_cast<MPType>(alpha);
    MPType out_pos = static_cast<MPType>(out > zero);
    MPType out_neg = static_cast<MPType>(out <= zero);
    return static_cast<T>(dout * (out_pos + out_neg * (out + a)));
  }

909 910 911
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Z
zhupengyang 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
};

template <typename T>
struct CudaELUGradNegativeAlphaFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // case 2: alpha < 0
  // dx = dout, if x > 0
  // dx = dout * (out + alpha), if x <=0
927 928
  __device__ __forceinline__ T operator()(const T arg_dout, const T arg_out,
                                          const T arg_x) const {
929
    MPType dout = static_cast<MPType>(arg_dout);
Z
zhupengyang 已提交
930
    MPType out = static_cast<MPType>(arg_out);
931
    MPType x = static_cast<MPType>(arg_x);
932
    MPType a = static_cast<MPType>(alpha);
Z
zhupengyang 已提交
933 934 935
    MPType x_pos = static_cast<MPType>(x > zero);
    MPType x_neg = static_cast<MPType>(x <= zero);
    return static_cast<T>(dout * (x_pos + x_neg * (out + a)));
936 937
  }

938
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
939 940
};

Z
zhupengyang 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
template <typename DeviceContext, typename T>
class ELUGradCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<framework::Tensor>("Out");
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    d_x->mutable_data<T>(ctx.GetPlace());
    const float alpha = ctx.Attr<float>("alpha");

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    std::vector<const framework::Tensor*> ins = {d_out, out};
    std::vector<framework::Tensor*> outs = {d_x};
    if (alpha > 0) {
      CudaELUGradFunctor<T> functor;
      functor.alpha = alpha;
958 959
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
Z
zhupengyang 已提交
960 961 962 963
    } else {
      CudaELUGradNegativeAlphaFunctor<T> functor;
      functor.alpha = alpha;
      ins.push_back(x);
964 965
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
Z
zhupengyang 已提交
966 967 968 969
    }
  }
};

970 971 972 973 974 975 976 977 978 979 980 981
template <typename T>
struct CudaCELUFunctor : public BaseActivationFunctor<T> {
  using CT = typename details::MPTypeTrait<T>::Type;
  CT zero = static_cast<CT>(0.0f);
  CT one = static_cast<CT>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1))
982
  __device__ __forceinline__ T operator()(const T arg_x) const {
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    CT x = static_cast<CT>(arg_x);
    CT temp = static_cast<CT>(alpha) * (exp(x / static_cast<CT>(alpha)) - one);
    CT res = (x > zero ? x : zero) + (temp > zero ? zero : temp);
    return static_cast<T>(res);
  }
};

template <typename T>
struct CudaCELUGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  MPType one = static_cast<MPType>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // dx = dout, if alpha > 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
  // dx = dout , if alpha < 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
1005 1006
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType a = static_cast<MPType>(alpha);
    MPType temp_a_pos = static_cast<MPType>(alpha > 0.0f);
    MPType temp_a_neg = static_cast<MPType>(alpha <= 0.0f);
    MPType temp_x_pos = static_cast<MPType>(x > zero);
    MPType temp_x_neg = static_cast<MPType>(x <= zero);
    return static_cast<T>(
        dout *
        (temp_a_pos * temp_x_pos + temp_a_pos * temp_x_neg * exp(x / a) +
         temp_a_neg * temp_x_pos + exp(x / a) * temp_a_neg * temp_x_neg));
  }

1020
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1021 1022
};

1023
template <typename DeviceContext, typename Functor>
1024
class ActivationCudaKernel
1025 1026 1027
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
1028 1029
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor* x = nullptr;
1030
    framework::Tensor* out = nullptr;
1031 1032 1033 1034 1035 1036
    ExtractActivationTensor(ctx, &x, &out);
    out->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::vector<const framework::Tensor*> ins = {x};
    std::vector<framework::Tensor*> outs = {out};
    auto functor = Functor();
1037 1038
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
1039
      *attr.second = ctx.Attr<float>(attr.first);
1040
    }
1041 1042
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
1043 1044 1045 1046
  }
};

template <typename DeviceContext, typename Functor>
1047
class ActivationGradCudaKernel
1048 1049 1050
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
1051
  void Compute(const framework::ExecutionContext& ctx) const override {
1052 1053 1054
    const framework::Tensor *x, *out, *d_out;
    framework::Tensor* d_x = nullptr;
    x = out = d_out = nullptr;
1055
    ExtractActivationGradTensor<Functor::FwdDeps()>(ctx, &x, &out, &d_out,
1056
                                                    &d_x);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    d_x->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto functor = Functor();
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }

    std::vector<const framework::Tensor*> ins = {d_out};
    std::vector<framework::Tensor*> outs = {d_x};
1067

1068 1069
    if (static_cast<int>(Functor::FwdDeps()) ==
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
1070
      // Only need forward output Out
1071
      ins.push_back(out);
1072 1073
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
1074
    } else if (static_cast<int>(Functor::FwdDeps()) ==
1075
               static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
1076
      // Only need forward input X
1077
      ins.push_back(x);
1078 1079
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
1080
    } else {
1081 1082
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
1083 1084 1085 1086
    }
  }
};

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
USE_PHI_FUNCTOR(CudaCos)
USE_PHI_FUNCTOR(CudaTan)
USE_PHI_FUNCTOR(CudaAcos)
USE_PHI_FUNCTOR(CudaSin)
USE_PHI_FUNCTOR(CudaAsin)
USE_PHI_FUNCTOR(CudaAtan)
USE_PHI_FUNCTOR(CudaSinh)
USE_PHI_FUNCTOR(CudaCosh)
USE_PHI_FUNCTOR(CudaAsinh)
USE_PHI_FUNCTOR(CudaAcosh)
USE_PHI_FUNCTOR(CudaAtanh)
USE_PHI_FUNCTOR(CudaTanh)
USE_PHI_FUNCTOR(CudaBRelu)
USE_PHI_FUNCTOR(CudaLeakyRelu)
USE_PHI_FUNCTOR(CudaThresholdedRelu)

1103 1104 1105
}  // namespace operators
}  // namespace paddle

1106
namespace ops = paddle::operators;
1107 1108
namespace plat = paddle::platform;

1109 1110
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor,            \
                                        grad_functor)                          \
1111
  REGISTER_OP_CUDA_KERNEL(                                                     \
1112 1113 1114 1115 1116
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
1117 1118 1119
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
1120
  REGISTER_OP_CUDA_KERNEL(                                                     \
1121 1122 1123 1124 1125 1126
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
1127 1128 1129
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
#define REGISTER_ACTIVATION_CUDA_KERNEL_INT(act_type, op_name, functor,        \
                                            grad_functor)                      \
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int>>,                            \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int64_t>>,                        \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
1143 1144 1145
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int>>,                   \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int64_t>>,               \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
1157 1158 1159
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
1160

D
Double_V 已提交
1161
/* ======================== elu register  ============================ */
Z
zhupengyang 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
REGISTER_OP_CUDA_KERNEL(
    elu, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,
                                   ops::CudaELUFunctor<float>>,
    ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,
                              ops::CudaELUFunctor<double>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaELUFunctor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    elu_grad, ops::ELUGradCudaKernel<plat::CUDADeviceContext, float>,
    ops::ELUGradCudaKernel<plat::CUDADeviceContext, double>,
    ops::ELUGradCudaKernel<plat::CUDADeviceContext, plat::float16>);
D
Double_V 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

REGISTER_OP_CUDA_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CUDADeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CUDADeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CUDADeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/* ======================== celu register  ============================ */
REGISTER_ACTIVATION_CUDA_KERNEL(celu, CELU, CudaCELUFunctor,
                                CudaCELUGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/* ===========================    sigmoid register  ============================
 */
REGISTER_ACTIVATION_CUDA_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
                                CudaSigmoidGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
1208 1209 1210
                                 ops::SigmoidGradGradFunctor<plat::float16>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::bfloat16>>);
1211 1212 1213 1214 1215 1216 1217 1218

REGISTER_OP_CUDA_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CUDADeviceContext,
1219 1220 1221 1222
                                 ops::SigmoidTripleGradFunctor<plat::float16>>,
    ops::SigmoidTripleGradKernel<
        plat::CUDADeviceContext,
        ops::SigmoidTripleGradFunctor<plat::bfloat16>>);
1223 1224
/* ========================================================================== */

L
lvmengsi 已提交
1225
/* ===========================   sqrt register  ============================= */
1226 1227
REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                                CudaSqrtGradFunctor);
L
lvmengsi 已提交
1228 1229 1230 1231 1232 1233 1234 1235

REGISTER_OP_CUDA_KERNEL(
    sqrt_grad_grad,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
1236 1237 1238
                              ops::SqrtGradGradFunctor<plat::float16>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<plat::bfloat16>>);
L
lvmengsi 已提交
1239 1240
/* ========================================================================== */

W
whs 已提交
1241 1242
/* ===========================   rsqrt register  =============================
 */
1243 1244
REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, CudaRsqrtFunctor,
                                CudaRsqrtGradFunctor);
W
whs 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

REGISTER_OP_CUDA_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1256
/* ===========================  square register  ============================ */
1257 1258
REGISTER_ACTIVATION_CUDA_KERNEL_INT(square, Square, CudaSquareFunctor,
                                    CudaSquareGradFunctor);
1259 1260 1261 1262 1263 1264 1265 1266

REGISTER_OP_CUDA_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
1267
                                ops::SquareGradGradFunctor<plat::float16>>,
1268 1269
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
                                ops::SquareGradGradFunctor<plat::bfloat16>>,
1270 1271 1272 1273
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1274
/* ========================================================================== */
1275 1276 1277 1278 1279

/* ==========================   pow register  ============================ */
REGISTER_OP_CUDA_KERNEL(
    pow, ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<float>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<double>>,
1280 1281
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int64_t>>,
1282 1283 1284 1285 1286
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<float>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<double>>,
1287 1288
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int64_t>>,
1289 1290 1291
    ops::PowGradKernel<plat::CUDADeviceContext,
                       ops::PowGradFunctor<plat::float16>>);
/* ========================================================================== */
1292

W
wangzhen38 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/* ==========================   logit register  ============================ */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    logit_grad,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>);
/* ========================================================================== */

1308 1309
/* ==========================   exp register  ============================ */
REGISTER_OP_CUDA_KERNEL(
1310 1311 1312 1313
    exp, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                   ops::CudaExpFunctor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<double>>,
1314 1315
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int>>,
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int64_t>>,
1316 1317
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<plat::float16>>);
1318
REGISTER_OP_CUDA_KERNEL(
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    exp_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                            ops::CudaExpGradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int64_t>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<plat::float16>>);
1329 1330
/* ========================================================================== */

R
ronnywang 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/* ==========================   expm1 register  ============================ */

REGISTER_OP_CUDA_KERNEL(
    expm1, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                     ops::CudaExpm1Functor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<double>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    expm1_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                              ops::CudaExpm1GradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<plat::float16>>);
/* ========================================================================== */

1349
/* ==========================  Log register ==================================*/
1350
REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
1351 1352 1353 1354 1355 1356 1357 1358 1359

REGISTER_OP_CUDA_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#define FOR_EACH_ACTIVATION_CUDA_OP(__macro)                                  \
  __macro(silu, Silu, CudaSiluFunctor, CudaSiluGradFunctor);                  \
  __macro(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,                      \
          CudaLogSigmoidGradFunctor);                                         \
  __macro(softshrink, SoftShrink, CudaSoftShrinkFunctor,                      \
          CudaSoftShrinkGradFunctor);                                         \
  __macro(ceil, Ceil, CudaCeilFunctor, CudaZeroGradFunctor);                  \
  __macro(floor, Floor, CudaFloorFunctor, CudaZeroGradFunctor);               \
  __macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor);               \
  __macro(reciprocal, Reciprocal, CudaReciprocalFunctor,                      \
          CudaReciprocalGradFunctor);                                         \
  __macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor);              \
  __macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor);                  \
  __macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor);              \
  __macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \
  __macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor);              \
  __macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor);  \
  __macro(softsign, Softsign, CudaSoftsignFunctor, CudaSoftsignGradFunctor);  \
  __macro(relu6, Relu6, CudaRelu6Functor, CudaRelu6GradFunctor);              \
  __macro(tanh_shrink, TanhShrink, CudaTanhShrinkFunctor,                     \
          CudaTanhShrinkGradFunctor);                                         \
  __macro(hard_shrink, HardShrink, CudaHardShrinkFunctor,                     \
          CudaHardShrinkGradFunctor);                                         \
  __macro(hard_sigmoid, HardSigmoid, CudaHardSigmoidFunctor,                  \
          CudaHardSigmoidGradFunctor);                                        \
  __macro(swish, Swish, CudaSwishFunctor, CudaSwishGradFunctor);              \
1387
  __macro(mish, Mish, CudaMishFunctor, CudaMishGradFunctor);                  \
1388 1389 1390
  __macro(hard_swish, HardSwish, CudaHardSwishFunctor,                        \
          CudaHardSwishGradFunctor);
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

#ifdef PADDLE_WITH_XPU_KP
#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, op_name, functor,             \
                                       grad_functor)                           \
  REGISTER_OP_KERNEL(                                                          \
      act_type, KP, plat::XPUPlace,                                            \
      ops::ActivationCudaKernel<plat::XPUDeviceContext, ops::functor<float>>); \
  REGISTER_OP_KERNEL(act_type##_grad, KP, plat::XPUPlace,                      \
                     ops::ActivationGradCudaKernel<plat::XPUDeviceContext,     \
                                                   ops::grad_functor<float>>);

REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, LeakyRelu, CudaLeakyReluFunctor,
                               CudaLeakyReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
                               CudaSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(exp, Exp, CudaExpFunctor, CudaExpGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(reciprocal, Reciprocal, CudaReciprocalFunctor,
                               CudaReciprocalGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softplus, Softplus, CudaSoftplusFunctor,
                               CudaSoftplusGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, HardSwish, CudaHardSwishFunctor,
                               CudaHardSwishGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(elu, Elu, CudaELUFunctor, CudaELUGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(celu, Celu, CudaCELUFunctor,
                               CudaCELUGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                               CudaSqrtGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(square, Square, CudaSquareFunctor,
                               CudaSquareGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(silu, Silu, CudaSiluFunctor,
                               CudaSiluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,
                               CudaLogSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softshrink, SoftShrink, CudaSoftShrinkFunctor,
                               CudaSoftShrinkGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(ceil, Ceil, CudaCeilFunctor,
                               CudaZeroGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(floor, Floor, CudaFloorFunctor,
                               CudaZeroGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(log1p, Log1p, CudaLog1pFunctor,
                               CudaLog1pGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(brelu, BRelu, CudaBReluFunctor,
                               CudaBReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(soft_relu, SoftRelu, CudaSoftReluFunctor,
                               CudaSoftReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softsign, Softsign, CudaSoftsignFunctor,
                               CudaSoftsignGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(relu6, Relu6, CudaRelu6Functor,
                               CudaRelu6GradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_shrink, HardShrink, CudaHardShrinkFunctor,
                               CudaHardShrinkGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_sigmoid, HardSigmoid,
                               CudaHardSigmoidFunctor,
                               CudaHardSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(swish, Swish, CudaSwishFunctor,
                               CudaSwishGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(thresholded_relu, ThresholdedRelu,
                               CudaThresholdedReluFunctor,
                               CudaThresholdedReluGradFunctor);

#endif  // PADDLE_WITH_XPU_KP