activation_op.kps 47.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
liaogang 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/activation_op.h"
13 14
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
15
#include "paddle/fluid/platform/bfloat16.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
17

18 19 20 21
namespace paddle {
namespace operators {

template <typename T>
22 23 24 25 26
struct CudaSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // sigmoid(x) = 1 / (1 + exp(-x))
27
  __device__ __forceinline__ T operator()(const T arg_x) const {
28
    MPType x = static_cast<MPType>(arg_x);
29 30 31
    return static_cast<T>(one / (one + exp(-x)));
  }
};
32

33 34 35 36 37
template <typename T>
struct CudaSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout * out * (1 - out)
38
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
39
    return dout * out * (one - out);
40
  }
41

42 43 44
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
45 46
};

47 48 49 50 51 52 53 54 55
template <typename T>
struct CudaLogSigmoidFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // logsigmoid(x) = log(1 / (1 + exp(-x)))
  // For numerical stability,
  // logsigmoid(x) =
  //          - (max(-x, 0) + log(exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
56
  __device__ __forceinline__ T operator()(const T arg_x) const {
57
    MPType x = static_cast<MPType>(arg_x);
58 59 60 61
    MPType temp = x > zero ? zero : -x;
    return static_cast<T>(-temp - log(exp(-temp) + exp(-x - temp)));
  }
};
62 63

template <typename T>
64 65 66 67 68 69 70 71
struct CudaLogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);

  // dx = dout * exp(-x) / (1 + exp(-x))
  // For numerical stability:
  // dx = dout * exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) + exp(-x - max(-x,
  // 0)))
72 73
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
74 75
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
76 77 78 79
    MPType temp1 = x > zero ? zero : -x;
    MPType temp2 = exp(-x - temp1);
    return static_cast<T>(dout * (temp2 / (exp(-temp1) + temp2)));
  }
80

81
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
82 83 84 85 86 87 88
};

template <typename T>
struct CudaCeilFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // ceil(x) = ceil(x)
89
  __device__ __forceinline__ T operator()(const T arg_x) const {
90
    MPType x = static_cast<MPType>(arg_x);
91 92 93 94 95 96 97 98 99
    return static_cast<T>(ceil(x));
  }
};

template <typename T>
struct CudaFloorFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // floor(x) = floor(x)
100
  __device__ __forceinline__ T operator()(const T arg_x) const {
101
    MPType x = static_cast<MPType>(arg_x);
102 103 104 105 106 107 108 109 110
    return static_cast<T>(floor(x));
  }
};

template <typename T>
struct CudaRoundFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // round(x) = round(x)
111
  __device__ __forceinline__ T operator()(const T arg_x) const {
112
    MPType x = static_cast<MPType>(arg_x);
113 114 115 116
    return static_cast<T>(round(x));
  }
};

117
// GradFunctor for ceil, floor and round
118 119
template <typename T>
struct CudaZeroGradFunctor : public BaseActivationFunctor<T> {
120
  __device__ __forceinline__ T operator()(const T x) const {
121 122 123
    return static_cast<T>(0.0f);
  }

124 125
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
126 127 128 129 130 131 132 133
  }
};

template <typename T>
struct CudaReciprocalFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // reciprocal(x) = 1 / x
134
  __device__ __forceinline__ T operator()(const T x) const { return one / x; }
135
};
136

137
template <typename T>
138 139
struct CudaReciprocalGradFunctor : public BaseActivationFunctor<T> {
  // dx = -dout * out^2
140
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
141
    return -dout * out * out;
142
  }
143

144 145 146
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
147
};
148

149 150 151 152 153
template <typename T>
struct CudaExpFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // exp(x) = exp(x)
154
  __device__ __forceinline__ T operator()(const T arg_x) const {
155
    MPType x = static_cast<MPType>(arg_x);
156 157 158
    return static_cast<T>(exp(x));
  }
};
159 160

template <typename T>
161 162
struct CudaExpGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
163
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
164
    return dout * out;
165
  }
166

167 168 169
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
170
};
171

R
ronnywang 已提交
172 173 174 175 176
template <typename T>
struct CudaExpm1Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // expm1(x) = expm1(x)
177
  __device__ __forceinline__ T operator()(const T arg_x) const {
178
    MPType x = static_cast<MPType>(arg_x);
R
ronnywang 已提交
179 180 181 182 183 184 185
    return static_cast<T>(expm1(x));
  }
};

template <typename T>
struct CudaExpm1GradFunctor : public BaseActivationFunctor<T> {
  // dx = dout * out
186
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
187
    return dout * out + dout;
R
ronnywang 已提交
188 189
  }

190 191 192
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
193 194
};

195 196 197 198 199
template <typename T>
struct CudaLogFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log(x) = log(x)
200
  __device__ __forceinline__ T operator()(const T arg_x) const {
201
    MPType x = static_cast<MPType>(arg_x);
202 203 204 205 206 207 208
    return static_cast<T>(log(x));
  }
};

template <typename T>
struct CudaLogGradFunctor : public BaseActivationFunctor<T> {
  // dx = dout / x
209
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
210
    return dout / x;
211 212
  }

213
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
214 215 216 217 218
};

template <typename T>
struct CudaSquareFunctor : public BaseActivationFunctor<T> {
  // square(x) = x * x
219
  __device__ __forceinline__ T operator()(const T x) const { return x * x; }
220
};
221

222 223 224 225 226
template <typename T>
struct CudaSquareGradFunctor : public BaseActivationFunctor<T> {
  T two = static_cast<T>(2.0f);

  // dx = dout * 2 * x
227
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
228
    return dout * two * x;
229 230
  }

231
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
232 233
};

234 235 236 237 238
template <typename T>
struct CudaSqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // sqrt(x) = sqrt(x)
239
  __device__ __forceinline__ T operator()(const T arg_x) const {
240
    MPType x = static_cast<MPType>(arg_x);
241 242 243
    return static_cast<T>(sqrt(x));
  }
};
244

245 246 247 248 249
template <typename T>
struct CudaSqrtGradFunctor : public BaseActivationFunctor<T> {
  T one_half = static_cast<T>(0.5f);

  // dx = dout * 0.5 / out
250
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
251
    return one_half * dout / out;
252 253
  }

254 255 256
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
257
};
258

259 260 261 262 263
template <typename T>
struct CudaRsqrtFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // rsqrt(x) = rsqrt(x)
264
  __device__ __forceinline__ T operator()(const T arg_x) const {
265
    MPType x = static_cast<MPType>(arg_x);
266 267 268 269 270 271 272 273
    return static_cast<T>(rsqrt(x));
  }
};

template <typename T>
struct CudaRsqrtGradFunctor : public BaseActivationFunctor<T> {
  T minus_one_half = static_cast<T>(-0.5f);

274
  // dx = -0.5 * dout * out^3
275
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
276
    return minus_one_half * dout * out * out * out;
277 278
  }

279 280 281
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
282
};
283

284 285 286 287 288 289
template <typename T>
struct CudaLog1pFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // log1p(x) = log(1 + x)
290
  __device__ __forceinline__ T operator()(const T arg_x) const {
291
    MPType x = static_cast<MPType>(arg_x);
292 293 294 295 296 297 298 299 300
    return static_cast<T>(log(one + x));
  }
};

template <typename T>
struct CudaLog1pGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + x)
301
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
302
    return dout / (one + x);
303 304
  }

305
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
306 307 308 309 310 311 312
};

template <typename T>
struct CudaLog2Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log2(x) = log2(x)
313
  __device__ __forceinline__ T operator()(const T arg_x) const {
314
    MPType x = static_cast<MPType>(arg_x);
315 316 317 318 319 320 321 322 323 324
    return static_cast<T>(log2(x));
  }
};

template <typename T>
struct CudaLog2GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_two = static_cast<T>(log(static_cast<MPType>(2.0f)));

  // dx = dout / (x * log(2))
325
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
326
    return dout / (x * log_two);
327 328
  }

329
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
330 331 332 333 334 335 336
};

template <typename T>
struct CudaLog10Functor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;

  // log10(x) = log10(x)
337
  __device__ __forceinline__ T operator()(const T arg_x) const {
338
    MPType x = static_cast<MPType>(arg_x);
339 340 341 342 343 344 345 346 347 348
    return static_cast<T>(log10(x));
  }
};

template <typename T>
struct CudaLog10GradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  T log_ten = static_cast<T>(log(static_cast<MPType>(10.0f)));

  // dx = dout / (x * log(10))
349
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
350
    return dout / (x * log_ten);
351 352
  }

353
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
354 355 356 357 358 359 360 361 362 363 364 365 366 367
};

template <typename T>
struct CudaSoftReluFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // soft_relu(x) = log(1 + exp(max(min(x, threshold), -threshold)))
  // threshold should not be negative
368
  __device__ __forceinline__ T operator()(const T arg_x) const {
369
    MPType x = static_cast<MPType>(arg_x);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    MPType t = static_cast<MPType>(threshold);
    MPType temp_min = x < t ? x : t;
    MPType temp_max = temp_min > -t ? temp_min : -t;
    return static_cast<T>(log(one + exp(temp_max)));
  }
};

template <typename T>
struct CudaSoftReluGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > -threshold && out < threshold) ? dout * (1 - exp(-out)) : 0
  // threshold should not be negative
389 390
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_out) const {
391 392
    MPType dout = static_cast<MPType>(arg_dout);
    MPType out = static_cast<MPType>(arg_out);
393 394 395 396 397
    MPType t = static_cast<MPType>(threshold);
    return (out > -t && out < t) ? static_cast<T>(dout * (one - exp(-out)))
                                 : static_cast<T>(0.0f);
  }

398 399 400
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
401 402 403 404 405 406 407 408 409 410 411 412 413
};

template <typename T>
struct CudaSTanhFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // stanh(x) = b * tanh(a * x)
414
  __device__ __forceinline__ T operator()(const T arg_x) const {
415
    MPType x = static_cast<MPType>(arg_x);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    return static_cast<T>(b * tanh(a * x));
  }
};

template <typename T>
struct CudaSTanhGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float scale_a;
  float scale_b;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }

  // dx = dout * a * b * (1 - tanh(a * x) * tanh(a * x))
434 435
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
436 437
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
438 439 440 441 442 443
    MPType a = static_cast<MPType>(scale_a);
    MPType b = static_cast<MPType>(scale_b);
    MPType temp = tanh(a * x);
    return static_cast<T>(dout * a * b * (one - temp * temp));
  }

444
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
445 446 447 448 449 450 451 452 453 454 455 456 457 458
};

template <typename T>
struct CudaSoftplusFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // softplus(x) = beta * x > threshold ? x : log(1 + exp(beta * x)) / beta
459
  __device__ __forceinline__ T operator()(const T arg_x) const {
460
    MPType x = static_cast<MPType>(arg_x);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
    return static_cast<T>(x_beta > t ? x : log(one + exp(x_beta)) / b);
  }
};

template <typename T>
struct CudaSoftplusGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  // dx = x * beta > threshold ? dout : dout / (1 + exp(-beta * x))
480 481
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
482 483
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
484 485 486
    MPType b = static_cast<MPType>(beta);
    MPType t = static_cast<MPType>(threshold);
    MPType x_beta = x * beta;
487
    return x_beta > t ? arg_dout : static_cast<T>(dout / (one + exp(-x_beta)));
488 489
  }

490
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
491 492 493 494 495 496 497
};

template <typename T>
struct CudaSoftsignFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // softsign(x) = x / (1 + abs(x))
498
  __device__ __forceinline__ T operator()(const T x) const {
499
    return x / (one + abs(x));
500 501 502 503 504 505 506 507
  }
};

template <typename T>
struct CudaSoftsignGradFunctor : public BaseActivationFunctor<T> {
  T one = static_cast<T>(1.0f);

  // dx = dout / (1 + abs(x))^2
508
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
509 510
    T temp = one + abs(x);
    return dout / (temp * temp);
511 512
  }

513
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
514 515 516 517 518 519 520 521 522 523 524 525
};

template <typename T>
struct CudaRelu6Functor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // relu6(x) = min(max(0, x), 6)
526
  __device__ __forceinline__ T operator()(const T x) const {
527
    T t = static_cast<T>(threshold);
528
    return x <= zero ? zero : (x < t ? x : t);
529 530 531 532 533 534 535 536 537 538 539 540 541
  }
};

template <typename T>
struct CudaRelu6GradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = (out > 0 && out < t) ? dout : 0
542
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
543
    T t = static_cast<T>(threshold);
544
    return (out > zero && out < t) ? dout : zero;
545 546
  }

547 548 549
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
};

template <typename T>
struct CudaHardSigmoidFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // hard_sigmoid(x) = 0, when x <= -3
  //                   1, when x >= 3
  //                   x * slope + offset, otherwise
566
  __device__ __forceinline__ T operator()(const T x) const {
567
    T temp = x * static_cast<T>(slope) + static_cast<T>(offset);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < one ? temp_max : one;
    return temp_min;
  }
};

template <typename T>
struct CudaHardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  float slope;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  // dx = (out > 0 && out < 1) ? dout * slope : 0
586
  __device__ __forceinline__ T operator()(const T dout, const T out) const {
587
    return (out > zero && out < one) ? dout * static_cast<T>(slope) : zero;
588 589
  }

590 591 592
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
593 594 595 596 597 598 599 600 601 602 603 604 605
};

template <typename T>
struct CudaSwishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // swish(x) = x / (1 + exp(-beta * x))
606
  __device__ __forceinline__ T operator()(const T arg_x) const {
607
    MPType x = static_cast<MPType>(arg_x);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    MPType b = static_cast<MPType>(beta);
    return static_cast<T>(x / (one + exp(-b * x)));
  }
};

template <typename T>
struct CudaSwishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float beta;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

  // dx = dout * (1 + exp(-b * x) + b * x * exp(-b * x) / (1 + exp(-b * x))^2)
624 625
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
626 627
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
628 629 630 631 632 633 634 635
    MPType b = static_cast<MPType>(beta);
    MPType temp1 = one / (one + exp(-b * x));
    MPType out = x * temp1;
    MPType temp2 = b * out;
    MPType temp3 = temp1 * (one - temp2);
    return static_cast<T>(dout * (temp2 + temp3));
  }

636
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
637 638
};

639 640 641 642 643 644 645 646 647 648 649 650 651 652
template <typename T>
struct CudaMishFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // mish(x) = x * tanh(softplus(x))
  // softplus(x) = x, if x > threshold
  //             = ln(1 + exp(x)), otherwise
  // Inputs: args[0], the input x
653
  __device__ __forceinline__ T operator()(const T arg_x) const {
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    return static_cast<T>(x * tanh(sp));
  }
};

template <typename T>
struct CudaMishGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  // dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
  // sp = softplus(x)
  // Inputs: args[0], the input dout
  //         args[1], the input x
674 675
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
676 677 678 679 680 681 682 683 684
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType sp = (x > static_cast<MPType>(threshold)) ? x : log(one + exp(x));
    MPType gsp =
        (x > static_cast<MPType>(threshold)) ? one : one / (one + exp(-x));
    MPType tsp = tanh(sp);
    return static_cast<T>(dout * (tsp + x * (one - tsp * tsp) * gsp));
  }

685
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
686 687
};

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
template <typename T>
struct CudaHardSwishFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // hard_swish(x) = 0, when x <= -offset
  //                 x , when x >= threshold - offset
  //                 x * (x + offset) / scale, otherwise
  // threshold = scale = 6, offset = 3 by default
703
  __device__ __forceinline__ T operator()(const T x) const {
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    T t = static_cast<T>(threshold);
    T temp = x + static_cast<T>(offset);
    T temp_max = temp > zero ? temp : zero;
    T temp_min = temp_max < t ? temp_max : t;
    return temp_min * x / static_cast<T>(scale);
  }
};

template <typename T>
struct CudaHardSwishGradFunctor : public BaseActivationFunctor<T> {
  T zero = static_cast<T>(0.0f);
  T one = static_cast<T>(1.0f);
  T two = static_cast<T>(2.0f);
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  // dx = 0, when x <= -offset
  //      dout , when x >= threshold - offset
  //      dout * (2 * x / scale + offset / scale), otherwise
  // threshold = scale = 6, offset = 3 by default
729
  __device__ __forceinline__ T operator()(const T dout, const T x) const {
730 731 732 733
    T o = static_cast<T>(offset);
    T s = static_cast<T>(scale);
    T temp1 = static_cast<T>(x + o > zero);
    T temp2 = static_cast<T>(x + o < static_cast<T>(threshold));
734
    return dout * (temp1 * temp2 * (two * x + o) / s + one - temp2);
735 736
  }

737
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
738 739
};

740 741 742 743 744 745 746 747 748 749 750 751
template <typename T>
struct CudaCELUFunctor : public BaseActivationFunctor<T> {
  using CT = typename details::MPTypeTrait<T>::Type;
  CT zero = static_cast<CT>(0.0f);
  CT one = static_cast<CT>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // celu(x) = max(0, x) + min(0, alpha * (exp(x/alpha) - 1))
752
  __device__ __forceinline__ T operator()(const T arg_x) const {
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    CT x = static_cast<CT>(arg_x);
    CT temp = static_cast<CT>(alpha) * (exp(x / static_cast<CT>(alpha)) - one);
    CT res = (x > zero ? x : zero) + (temp > zero ? zero : temp);
    return static_cast<T>(res);
  }
};

template <typename T>
struct CudaCELUGradFunctor : public BaseActivationFunctor<T> {
  using MPType = typename details::MPTypeTrait<T>::Type;
  MPType zero = static_cast<MPType>(0.0f);
  MPType one = static_cast<MPType>(1.0f);
  float alpha;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  // dx = dout, if alpha > 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
  // dx = dout , if alpha < 0 and x > 0
  // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
775 776
  __device__ __forceinline__ T operator()(const T arg_dout,
                                          const T arg_x) const {
777 778 779 780 781 782 783 784 785 786 787 788 789
    MPType dout = static_cast<MPType>(arg_dout);
    MPType x = static_cast<MPType>(arg_x);
    MPType a = static_cast<MPType>(alpha);
    MPType temp_a_pos = static_cast<MPType>(alpha > 0.0f);
    MPType temp_a_neg = static_cast<MPType>(alpha <= 0.0f);
    MPType temp_x_pos = static_cast<MPType>(x > zero);
    MPType temp_x_neg = static_cast<MPType>(x <= zero);
    return static_cast<T>(
        dout *
        (temp_a_pos * temp_x_pos + temp_a_pos * temp_x_neg * exp(x / a) +
         temp_a_neg * temp_x_pos + exp(x / a) * temp_a_neg * temp_x_neg));
  }

790
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
791 792
};

793
template <typename DeviceContext, typename Functor>
794
class ActivationCudaKernel
795 796 797
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
798 799
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor* x = nullptr;
800
    framework::Tensor* out = nullptr;
801 802 803 804 805 806
    ExtractActivationTensor(ctx, &x, &out);
    out->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::vector<const framework::Tensor*> ins = {x};
    std::vector<framework::Tensor*> outs = {out};
    auto functor = Functor();
807 808
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
809
      *attr.second = ctx.Attr<float>(attr.first);
810
    }
811 812
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
813 814 815 816
  }
};

template <typename DeviceContext, typename Functor>
817
class ActivationGradCudaKernel
818 819 820
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
821
  void Compute(const framework::ExecutionContext& ctx) const override {
822 823 824
    const framework::Tensor *x, *out, *d_out;
    framework::Tensor* d_x = nullptr;
    x = out = d_out = nullptr;
825
    ExtractActivationGradTensor<Functor::FwdDeps()>(ctx, &x, &out, &d_out,
826
                                                    &d_x);
827 828 829 830 831 832 833 834 835 836
    d_x->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto functor = Functor();
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }

    std::vector<const framework::Tensor*> ins = {d_out};
    std::vector<framework::Tensor*> outs = {d_x};
837

838 839
    if (static_cast<int>(Functor::FwdDeps()) ==
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
840
      // Only need forward output Out
841
      ins.push_back(out);
842 843
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
844
    } else if (static_cast<int>(Functor::FwdDeps()) ==
845
               static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
846
      // Only need forward input X
847
      ins.push_back(x);
848 849
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
850
    } else {
851 852
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
853 854 855 856
    }
  }
};

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
USE_PHI_FUNCTOR(CudaCos)
USE_PHI_FUNCTOR(CudaTan)
USE_PHI_FUNCTOR(CudaAcos)
USE_PHI_FUNCTOR(CudaSin)
USE_PHI_FUNCTOR(CudaAsin)
USE_PHI_FUNCTOR(CudaAtan)
USE_PHI_FUNCTOR(CudaSinh)
USE_PHI_FUNCTOR(CudaCosh)
USE_PHI_FUNCTOR(CudaAsinh)
USE_PHI_FUNCTOR(CudaAcosh)
USE_PHI_FUNCTOR(CudaAtanh)
USE_PHI_FUNCTOR(CudaTanh)
USE_PHI_FUNCTOR(CudaBRelu)
USE_PHI_FUNCTOR(CudaLeakyRelu)
USE_PHI_FUNCTOR(CudaThresholdedRelu)
Y
YuanRisheng 已提交
872 873 874 875 876 877 878 879 880
USE_PHI_FUNCTOR(CudaHardShrink)
USE_PHI_FUNCTOR(CudaSoftShrink)
USE_PHI_FUNCTOR(CudaTanhShrink)
USE_PHI_FUNCTOR(CudaSilu)
USE_PHI_FUNCTOR(CudaELU)

template <typename T>
using CudaELUGradNegativeAlphaFunctor =
    phi::funcs::CudaELUGradNegativeAlphaFunctor<T>;
881

882 883 884
}  // namespace operators
}  // namespace paddle

885
namespace ops = paddle::operators;
886 887
namespace plat = paddle::platform;

888 889
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor,            \
                                        grad_functor)                          \
890
  REGISTER_OP_CUDA_KERNEL(                                                     \
891 892 893 894 895
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
896 897 898
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
899
  REGISTER_OP_CUDA_KERNEL(                                                     \
900 901 902 903 904 905
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
906 907 908
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
909

910 911 912 913 914 915 916 917 918 919 920 921
#define REGISTER_ACTIVATION_CUDA_KERNEL_INT(act_type, op_name, functor,        \
                                            grad_functor)                      \
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type, ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext, \
                                          ops::functor<float>>,                \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<double>>,                         \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int>>,                            \
      ops::ActivationCudaKernel<paddle::platform::CUDADeviceContext,           \
                                ops::functor<int64_t>>,                        \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
922 923 924
                                ops::functor<plat::float16>>,                  \
      ops::ActivationCudaKernel<plat::CUDADeviceContext,                       \
                                ops::functor<plat::bfloat16>>);                \
925 926 927 928 929 930 931 932 933 934 935
  REGISTER_OP_CUDA_KERNEL(                                                     \
      act_type##_grad,                                                         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<float>>,                 \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<double>>,                \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int>>,                   \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<int64_t>>,               \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
936 937 938
                                    ops::grad_functor<plat::float16>>,         \
      ops::ActivationGradCudaKernel<plat::CUDADeviceContext,                   \
                                    ops::grad_functor<plat::bfloat16>>);
939

D
Double_V 已提交
940 941
/* ========================================================================== */

942 943 944 945 946 947 948 949 950 951 952 953 954
/* ======================== celu register  ============================ */
REGISTER_ACTIVATION_CUDA_KERNEL(celu, CELU, CudaCELUFunctor,
                                CudaCELUGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CUDADeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);
/* ========================================================================== */

955 956 957 958 959 960 961 962 963 964 965 966
/* ===========================    sigmoid register  ============================
 */
REGISTER_ACTIVATION_CUDA_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
                                CudaSigmoidGradFunctor);

REGISTER_OP_CUDA_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
967 968 969
                                 ops::SigmoidGradGradFunctor<plat::float16>>,
    ops::SigmoidDoubleGradKernel<plat::CUDADeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::bfloat16>>);
970 971 972 973 974 975 976 977

REGISTER_OP_CUDA_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<paddle::platform::CUDADeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CUDADeviceContext,
978 979 980 981
                                 ops::SigmoidTripleGradFunctor<plat::float16>>,
    ops::SigmoidTripleGradKernel<
        plat::CUDADeviceContext,
        ops::SigmoidTripleGradFunctor<plat::bfloat16>>);
982 983
/* ========================================================================== */

L
lvmengsi 已提交
984
/* ===========================   sqrt register  ============================= */
985 986
REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                                CudaSqrtGradFunctor);
L
lvmengsi 已提交
987 988 989 990 991 992 993 994

REGISTER_OP_CUDA_KERNEL(
    sqrt_grad_grad,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
995 996 997
                              ops::SqrtGradGradFunctor<plat::float16>>,
    ops::SqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                              ops::SqrtGradGradFunctor<plat::bfloat16>>);
L
lvmengsi 已提交
998 999
/* ========================================================================== */

W
whs 已提交
1000 1001
/* ===========================   rsqrt register  =============================
 */
1002 1003
REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, CudaRsqrtFunctor,
                                CudaRsqrtGradFunctor);
W
whs 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

REGISTER_OP_CUDA_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<paddle::platform::CUDADeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1015
/* ===========================  square register  ============================ */
1016 1017
REGISTER_ACTIVATION_CUDA_KERNEL_INT(square, Square, CudaSquareFunctor,
                                    CudaSquareGradFunctor);
1018 1019 1020 1021 1022 1023 1024 1025

REGISTER_OP_CUDA_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
1026
                                ops::SquareGradGradFunctor<plat::float16>>,
1027 1028
    ops::SquareDoubleGradKernel<plat::CUDADeviceContext,
                                ops::SquareGradGradFunctor<plat::bfloat16>>,
1029 1030 1031 1032
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1033
/* ========================================================================== */
1034 1035 1036 1037 1038

/* ==========================   pow register  ============================ */
REGISTER_OP_CUDA_KERNEL(
    pow, ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<float>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<double>>,
1039 1040
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<int64_t>>,
1041 1042 1043 1044 1045
    ops::PowKernel<plat::CUDADeviceContext, ops::PowFunctor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<float>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<double>>,
1046 1047
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CUDADeviceContext, ops::PowGradFunctor<int64_t>>,
1048 1049 1050
    ops::PowGradKernel<plat::CUDADeviceContext,
                       ops::PowGradFunctor<plat::float16>>);
/* ========================================================================== */
1051

W
wangzhen38 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/* ==========================   logit register  ============================ */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    logit_grad,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LogitGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>);
/* ========================================================================== */

1067 1068
/* ==========================   exp register  ============================ */
REGISTER_OP_CUDA_KERNEL(
1069 1070 1071 1072
    exp, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                   ops::CudaExpFunctor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<double>>,
1073 1074
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int>>,
    ops::ActivationKernel<plat::CUDADeviceContext, ops::ExpFunctor<int64_t>>,
1075 1076
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpFunctor<plat::float16>>);
1077
REGISTER_OP_CUDA_KERNEL(
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    exp_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                            ops::CudaExpGradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<int64_t>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpGradFunctor<plat::float16>>);
1088 1089
/* ========================================================================== */

R
ronnywang 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/* ==========================   expm1 register  ============================ */

REGISTER_OP_CUDA_KERNEL(
    expm1, ops::ActivationCudaKernel<plat::CUDADeviceContext,
                                     ops::CudaExpm1Functor<float>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<double>>,
    ops::ActivationCudaKernel<plat::CUDADeviceContext,
                              ops::CudaExpm1Functor<plat::float16>>);
REGISTER_OP_CUDA_KERNEL(
    expm1_grad, ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                              ops::CudaExpm1GradFunctor<float>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<double>>,
    ops::ActivationGradCudaKernel<plat::CUDADeviceContext,
                                  ops::CudaExpm1GradFunctor<plat::float16>>);
/* ========================================================================== */

1108
/* ==========================  Log register ==================================*/
1109
REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
1110 1111 1112 1113 1114 1115 1116 1117 1118

REGISTER_OP_CUDA_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CUDADeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
#define FOR_EACH_ACTIVATION_CUDA_OP(__macro)                                  \
  __macro(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,                      \
          CudaLogSigmoidGradFunctor);                                         \
  __macro(softshrink, SoftShrink, CudaSoftShrinkFunctor,                      \
          CudaSoftShrinkGradFunctor);                                         \
  __macro(ceil, Ceil, CudaCeilFunctor, CudaZeroGradFunctor);                  \
  __macro(floor, Floor, CudaFloorFunctor, CudaZeroGradFunctor);               \
  __macro(round, Round, CudaRoundFunctor, CudaZeroGradFunctor);               \
  __macro(reciprocal, Reciprocal, CudaReciprocalFunctor,                      \
          CudaReciprocalGradFunctor);                                         \
  __macro(log1p, Log1p, CudaLog1pFunctor, CudaLog1pGradFunctor);              \
  __macro(log2, Log2, CudaLog2Functor, CudaLog2GradFunctor);                  \
  __macro(log10, Log10, CudaLog10Functor, CudaLog10GradFunctor);              \
  __macro(soft_relu, SoftRelu, CudaSoftReluFunctor, CudaSoftReluGradFunctor); \
  __macro(stanh, STanh, CudaSTanhFunctor, CudaSTanhGradFunctor);              \
  __macro(softplus, Softplus, CudaSoftplusFunctor, CudaSoftplusGradFunctor);  \
  __macro(softsign, Softsign, CudaSoftsignFunctor, CudaSoftsignGradFunctor);  \
  __macro(relu6, Relu6, CudaRelu6Functor, CudaRelu6GradFunctor);              \
  __macro(tanh_shrink, TanhShrink, CudaTanhShrinkFunctor,                     \
          CudaTanhShrinkGradFunctor);                                         \
  __macro(hard_shrink, HardShrink, CudaHardShrinkFunctor,                     \
          CudaHardShrinkGradFunctor);                                         \
  __macro(hard_sigmoid, HardSigmoid, CudaHardSigmoidFunctor,                  \
          CudaHardSigmoidGradFunctor);                                        \
  __macro(swish, Swish, CudaSwishFunctor, CudaSwishGradFunctor);              \
1145
  __macro(mish, Mish, CudaMishFunctor, CudaMishGradFunctor);                  \
1146 1147 1148
  __macro(hard_swish, HardSwish, CudaHardSwishFunctor,                        \
          CudaHardSwishGradFunctor);
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

#ifdef PADDLE_WITH_XPU_KP
#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, op_name, functor,             \
                                       grad_functor)                           \
  REGISTER_OP_KERNEL(                                                          \
      act_type, KP, plat::XPUPlace,                                            \
      ops::ActivationCudaKernel<plat::XPUDeviceContext, ops::functor<float>>); \
  REGISTER_OP_KERNEL(act_type##_grad, KP, plat::XPUPlace,                      \
                     ops::ActivationGradCudaKernel<plat::XPUDeviceContext,     \
                                                   ops::grad_functor<float>>);

REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, LeakyRelu, CudaLeakyReluFunctor,
                               CudaLeakyReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
                               CudaSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(exp, Exp, CudaExpFunctor, CudaExpGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(reciprocal, Reciprocal, CudaReciprocalFunctor,
                               CudaReciprocalGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softplus, Softplus, CudaSoftplusFunctor,
                               CudaSoftplusGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, HardSwish, CudaHardSwishFunctor,
                               CudaHardSwishGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(elu, Elu, CudaELUFunctor, CudaELUGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(celu, Celu, CudaCELUFunctor,
                               CudaCELUGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
                               CudaSqrtGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(square, Square, CudaSquareFunctor,
                               CudaSquareGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(silu, Silu, CudaSiluFunctor,
                               CudaSiluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,
                               CudaLogSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softshrink, SoftShrink, CudaSoftShrinkFunctor,
                               CudaSoftShrinkGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(ceil, Ceil, CudaCeilFunctor,
                               CudaZeroGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(floor, Floor, CudaFloorFunctor,
                               CudaZeroGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(log1p, Log1p, CudaLog1pFunctor,
                               CudaLog1pGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(brelu, BRelu, CudaBReluFunctor,
                               CudaBReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(soft_relu, SoftRelu, CudaSoftReluFunctor,
                               CudaSoftReluGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softsign, Softsign, CudaSoftsignFunctor,
                               CudaSoftsignGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(relu6, Relu6, CudaRelu6Functor,
                               CudaRelu6GradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_shrink, HardShrink, CudaHardShrinkFunctor,
                               CudaHardShrinkGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(hard_sigmoid, HardSigmoid,
                               CudaHardSigmoidFunctor,
                               CudaHardSigmoidGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(swish, Swish, CudaSwishFunctor,
                               CudaSwishGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(thresholded_relu, ThresholdedRelu,
                               CudaThresholdedReluFunctor,
                               CudaThresholdedReluGradFunctor);

#endif  // PADDLE_WITH_XPU_KP