test_imperative_basic.py 32.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
22
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24
import paddle.fluid.dygraph_utils as dygraph_utils
25
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
26
import paddle
27 28


29
class MyLayer(fluid.Layer):
30 31
    def __init__(self):
        super(MyLayer, self).__init__()
32 33

    def forward(self, inputs):
M
minqiyang 已提交
34
        x = fluid.layers.relu(inputs)
35
        self._x_for_debug = x
X
Xin Pan 已提交
36 37 38
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
39 40


41
class MLP(fluid.Layer):
42 43
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
44
        self._linear1 = None
45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
59 60

    def forward(self, inputs):
61 62
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
63 64 65 66
        x = fluid.layers.reduce_sum(x)
        return x


67
class SimpleRNNCell(fluid.Layer):
68 69
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
70 71 72
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
73 74
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
75 76 77 78

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
79
        self._i2h_w = None
80 81
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
82 83 84
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
85 86
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
87 88 89
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
90 91
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
92 93 94 95 96
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
97 98 99 100 101 102
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
126
        hidden = self._helper.append_activation(hidden, act='tanh')
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
146
            attrs={'keep_dim': False,
147 148 149 150 151
                   'reduce_all': True})

        return reduce_out, hidden


152
class SimpleRNN(fluid.Layer):
153 154
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
155 156 157 158 159 160
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
161 162

    def forward(self, inputs):
J
JiabinYang 已提交
163
        outs = list()
J
JiabinYang 已提交
164 165
        pre_hiddens = list()

166
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
167 168 169 170 171 172
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
173
        for i in range(self.seq_len):
J
JiabinYang 已提交
174 175 176
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
177 178
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
179

J
JiabinYang 已提交
180
        return outs, pre_hiddens
J
JiabinYang 已提交
181 182


M
minqiyang 已提交
183
class TestImperative(unittest.TestCase):
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
207 208 209
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
210 211 212
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
213
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
Z
Zhou Wei 已提交
214
        var_inp = paddle.to_tensor(np_inp)
215 216 217 218 219
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
220 221 222 223
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
Z
Zhou Wei 已提交
224
        var_inp = paddle.to_tensor(np_inp)
225 226 227 228 229 230 231
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out2 = out.numpy()
        out.backward()
        dy_grad2 = mlp._linear1.weight.gradient()
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
232
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
233 234
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

235 236 237 238 239 240 241 242 243 244 245
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
246 247
        t = fluid.Tensor()
        t.set(x, fluid.CPUPlace())
248 249 250 251 252 253
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)
254
            tmp6 = fluid.core.VarBase(t)
255 256 257 258 259 260

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))
261
            self.assertTrue(np.array_equal(x, tmp6.numpy()))
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

281 282 283 284 285 286
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
287
            with paddle.no_grad():
288 289
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
290
                self.assertTrue(tmp.stop_gradient)
291 292 293 294 295
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

296
            self.assertTrue(tmp._grad_ivar() is None)
297 298
            self.assertTrue(l0.weight._grad_ivar() is not None)

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def test_paddle_imperative_set_grad_enabled(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with paddle.set_grad_enabled(False):
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                with paddle.set_grad_enabled(True):
                    tmp2 = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
                self.assertTrue(tmp2.stop_gradient is False)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp2
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(tmp2._grad_ivar() is not None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
321 322
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
323
        with fluid.dygraph.guard():
M
minqiyang 已提交
324 325
            inputs = []
            for _ in range(10):
326 327 328
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
329 330
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
331
            loss.backward()
332 333 334
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
335 336 337
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
338 339
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
340 341
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            loss2.backward()
342

343 344
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
345 346 347
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
348

349 350 351 352 353 354 355 356 357
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
358
                assert type(e) == ValueError
359 360 361 362

            try:
                new_variable.backward()
            except Exception as e:
363
                assert type(e) == core.EnforceNotMet
364 365 366 367

            try:
                new_variable.clear_gradient()
            except Exception as e:
368
                assert type(e) == core.EnforceNotMet
369 370 371 372 373 374 375 376 377 378 379 380 381

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
382
                assert type(e) == core.EnforceNotMet
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
400
            self.assertTrue(new_var.persistable)
401

M
minqiyang 已提交
402
    def test_layer(self):
L
lujun 已提交
403
        with fluid.dygraph.guard():
M
minqiyang 已提交
404 405
            cl = core.Layer()
            cl.forward([])
406
            l = fluid.Layer("l")
M
minqiyang 已提交
407 408 409 410
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
411 412
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
413
            var_inp.stop_gradient = False
414
            l = MyLayer()
M
minqiyang 已提交
415 416
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
417
            dy_out = x.numpy()
L
lujun 已提交
418
            x.backward()
419
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
420

421 422
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
423
            var_inp2.stop_gradient = False
424
            l2 = MyLayer()
425 426 427
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
428 429
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            x2.backward()
430 431
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
432 433 434
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
435
            l = MyLayer()
M
minqiyang 已提交
436 437 438 439 440 441 442 443 444 445 446 447
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
448 449
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
450 451 452

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
453 454
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
455
            mlp = MLP(input_size=2)
M
minqiyang 已提交
456
            out = mlp(var_inp)
457
            dy_out = out.numpy()
L
lujun 已提交
458
            out.backward()
459
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
460

461 462
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
463
            mlp2 = MLP(input_size=2)
464 465
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
466 467
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out2.backward()
468
            dy_grad2 = mlp2._linear1.weight.gradient()
469

M
minqiyang 已提交
470 471 472
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
473
            mlp = MLP(input_size=2)
M
minqiyang 已提交
474 475
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
476
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
477 478 479 480 481 482 483 484 485 486
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
487 488
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
489 490

        params = mlp.parameters(True)
491 492 493 494
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
495 496
        self.assertEqual(len(params), 4)

J
Jiabin Yang 已提交
497
        sublayers = mlp.sublayers()
498 499
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
500 501
        self.assertEqual(len(sublayers), 2)

502 503 504 505 506 507 508 509 510 511
    def test_gradient_accumulation(self):
        def test_single_api(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            x = paddle.to_tensor(5., stop_gradient=False)
            for i in range(10):
                y = paddle.pow(x, 4.0)
                y.backward()
                self.assertEqual(x.grad, (i + 1) * 500)
            x.clear_gradient()
            self.assertEqual(x.grad, 0.)
512
            for i in range(10):
513 514 515
                y = paddle.pow(x, 4.0)
                y.backward()
                self.assertEqual(x.grad, (i + 1) * 500)
516 517
            x.clear_grad()
            self.assertEqual(x.grad, 0.)
518 519 520 521 522 523 524 525 526 527

        def test_simple_net(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            x = paddle.to_tensor(5., stop_gradient=False)
            y = paddle.to_tensor(2., stop_gradient=False)
            z = paddle.to_tensor(3., stop_gradient=False)

            def fun(x, y, z):
                loss1 = x * x * y
                loss2 = x * z
528 529 530 531 532 533 534 535 536
                loss1.backward(retain_graph=True)
                loss2.backward(retain_graph=True)
                self.assertTrue(np.array_equal(x.grad, [23.]))
                self.assertTrue(np.array_equal(y.grad, [25.]))
                self.assertTrue(np.array_equal(z.grad, [5.]))
                x.clear_grad()
                y.clear_grad()
                z.clear_grad()

537 538
                dx = paddle.grad([loss1], x, create_graph=True)[0]
                loss = loss1 + loss2 + dx
539
                # loss = x*x*y + x*z + 2*x*y
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
                return loss

            loss = fun(x, y, z)
            loss.backward(retain_graph=True)
            # x.grad = 2*x*y + z + 2*y = 27 
            self.assertTrue(np.array_equal(x.grad, [27]))

            loss.backward(retain_graph=True)
            self.assertTrue(np.array_equal(x.grad, [54]))

            loss.backward()
            self.assertTrue(np.array_equal(x.grad, [81]))

            with self.assertRaises(RuntimeError):
                loss.backward()

            loss1 = x * x * y
            loss2 = x * z
            dx = paddle.grad([loss1], x, create_graph=True)[0]
            loss = loss1 + loss2 + dx
            loss.backward()
            self.assertTrue(np.array_equal(dx.grad, [1]))
            self.assertTrue(np.array_equal(x.grad, [108]))

        def test_mlp(sort_sum_gradient):
            fluid.set_flags({'FLAGS_sort_sum_gradient': sort_sum_gradient})
            input_size = 5
            paddle.seed(1)
            mlp1 = MLP(input_size=input_size)
            # generate the gradient of each step
            mlp2 = MLP(input_size=input_size)

572 573 574 575
            expected_weight1_grad = 0.
            expected_bias1_grad = 0.
            expected_weight2_grad = 0.
            expected_bias2_grad = 0.
576

577
            for batch_id in range(100):
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
                x = paddle.uniform([10, input_size])
                detach_x = x.detach()
                clear_loss = mlp2(detach_x)
                clear_loss.backward()
                expected_weight1_grad = expected_weight1_grad + mlp2._linear1.weight.grad
                expected_bias1_grad = expected_bias1_grad + mlp2._linear1.bias.grad
                expected_weight2_grad = expected_weight2_grad + mlp2._linear2.weight.grad
                expected_bias2_grad = expected_bias2_grad + mlp2._linear2.bias.grad

                loss = mlp1(x)
                loss.backward()

                self.assertTrue(np.array_equal(loss.grad, [1]))
                self.assertTrue(
                    np.allclose(mlp1._linear1.weight.grad,
                                expected_weight1_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear1.bias.grad, expected_bias1_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear2.weight.grad,
                                expected_weight2_grad))
                self.assertTrue(
                    np.allclose(mlp1._linear2.bias.grad, expected_bias2_grad))

                mlp2.clear_gradients()
                self.assertTrue(np.array_equal(clear_loss.grad, [1]))
604
                if ((batch_id + 1) % 10) == 0:
605
                    mlp1.clear_gradients()
606 607 608 609
                    expected_weight1_grad = 0.
                    expected_bias1_grad = 0.
                    expected_weight2_grad = 0.
                    expected_bias2_grad = 0.
610 611 612 613 614 615 616 617 618

        with fluid.dygraph.guard():
            test_single_api(False)
            test_single_api(True)
            test_simple_net(False)
            test_simple_net(True)
            test_mlp(False)
            test_mlp(True)

X
Xin Pan 已提交
619
    def test_dygraph_vs_static(self):
620 621
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
622 623 624

        # dynamic graph
        with fluid.dygraph.guard():
625 626 627
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
628 629 630
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
631
            dygraph_result = x.numpy()
X
Xin Pan 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
665 666
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
667 668 669
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
670 671 672 673 674
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
675 676
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
677
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
678
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
679
            outs, pre_hiddens = simple_rnn.forward(var_inp)
680
            dy_out = outs[3].numpy()
L
lujun 已提交
681
            outs[3].backward()
682 683 684
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
685

686 687 688
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
689
            simple_rnn2 = SimpleRNN()
690 691
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
692 693
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            outs2[3].backward()
694 695 696 697
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
698 699 700
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
701
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
702 703 704 705 706 707 708 709 710 711
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
712

M
minqiyang 已提交
713 714 715 716
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
717 718 719 720
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
721

722 723 724 725 726 727 728
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

729 730 731 732 733 734 735 736 737 738 739 740 741
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
767
            self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
768

769 770 771 772 773 774 775 776 777 778
    def test_append_activation_in_dygraph3(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        helper = LayerObjectHelper(fluid.unique_name.generate("test"))
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    def test_append_activation_in_dygraph_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(
            fluid.unique_name.generate("test"), act="relu", use_mkldnn=True)
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a)
            res2 = fluid.layers.relu(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph_global_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(fluid.unique_name.generate("test"), act="relu")
        func = helper.append_activation
794
        with fluid.dygraph.guard(fluid.core.CPUPlace()):
795 796 797 798 799 800 801 802 803
            a = fluid.dygraph.to_variable(a_np)
            fluid.set_flags({'FLAGS_use_mkldnn': True})
            try:
                res1 = func(a)
            finally:
                fluid.set_flags({'FLAGS_use_mkldnn': False})
            res2 = fluid.layers.relu(a)
        self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


821 822 823 824 825 826 827 828 829
class TestDygraphGuardWithError(unittest.TestCase):
    def test_without_guard(self):
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np.zeros([10, 10]))
        with self.assertRaisesRegexp(TypeError,
                                     "Please use `with fluid.dygraph.guard()"):
            y = fluid.layers.matmul(x, x)


830
if __name__ == '__main__':
831
    paddle.enable_static()
832
    unittest.main()