test_imperative_basic.py 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23
import paddle.fluid.dygraph_utils as dygraph_utils
24
import paddle
25 26


27
class MyLayer(fluid.Layer):
28 29
    def __init__(self):
        super(MyLayer, self).__init__()
30 31

    def forward(self, inputs):
M
minqiyang 已提交
32
        x = fluid.layers.relu(inputs)
33
        self._x_for_debug = x
X
Xin Pan 已提交
34 35 36
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
37 38


39
class MLP(fluid.Layer):
40 41
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
42
        self._linear1 = None
43 44 45 46 47 48 49 50 51 52 53 54 55 56
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
57 58

    def forward(self, inputs):
59 60
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
61 62 63 64
        x = fluid.layers.reduce_sum(x)
        return x


65
class SimpleRNNCell(fluid.Layer):
66 67
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
68 69 70
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
71 72
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
73 74 75 76

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
77
        self._i2h_w = None
78 79
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
80 81 82
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
83 84
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
85 86 87
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
88 89
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
90 91 92 93 94
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
95 96 97 98 99 100
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
124
        hidden = self._helper.append_activation(hidden, act='tanh')
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
144
            attrs={'keep_dim': False,
145 146 147 148 149
                   'reduce_all': True})

        return reduce_out, hidden


150
class SimpleRNN(fluid.Layer):
151 152
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
153 154 155 156 157 158
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
159 160

    def forward(self, inputs):
J
JiabinYang 已提交
161
        outs = list()
J
JiabinYang 已提交
162 163
        pre_hiddens = list()

164
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
165 166 167 168 169 170
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
171
        for i in range(self.seq_len):
J
JiabinYang 已提交
172 173 174
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
175 176
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
177

J
JiabinYang 已提交
178
        return outs, pre_hiddens
J
JiabinYang 已提交
179 180


M
minqiyang 已提交
181
class TestImperative(unittest.TestCase):
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
        self.assertFalse(paddle.imperative.enabled())
        paddle.enable_imperative()
        self.assertTrue(paddle.imperative.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = paddle.imperative.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        paddle.disable_imperative()
        self.assertFalse(paddle.imperative.enabled())
        with paddle.imperative.guard():
            self.assertTrue(paddle.imperative.enabled())
            var_inp = paddle.imperative.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(paddle.imperative.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
230 231
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with paddle.imperative.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
292 293
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
294
        with fluid.dygraph.guard():
M
minqiyang 已提交
295 296
            inputs = []
            for _ in range(10):
297 298 299
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
300 301
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
302
            loss.backward()
303 304 305
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
306 307 308
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
309 310 311 312 313 314
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

315 316
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
317 318 319
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
320

321 322 323 324 325 326 327 328 329
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
330
                assert type(e) == core.EnforceNotMet
331 332 333 334

            try:
                new_variable.backward()
            except Exception as e:
335
                assert type(e) == core.EnforceNotMet
336 337 338 339

            try:
                new_variable.clear_gradient()
            except Exception as e:
340
                assert type(e) == core.EnforceNotMet
341 342 343 344 345 346 347 348 349 350 351 352 353

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
354
                assert type(e) == core.EnforceNotMet
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
372
            self.assertTrue(new_var.persistable)
373

M
minqiyang 已提交
374
    def test_layer(self):
L
lujun 已提交
375
        with fluid.dygraph.guard():
M
minqiyang 已提交
376 377
            cl = core.Layer()
            cl.forward([])
378
            l = fluid.Layer("l")
M
minqiyang 已提交
379 380 381 382
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
383 384
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
385
            var_inp.stop_gradient = False
386
            l = MyLayer()
387
            print(var_inp)
M
minqiyang 已提交
388 389
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
390
            dy_out = x.numpy()
L
lujun 已提交
391
            x.backward()
392
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
393

394 395
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
396
            var_inp2.stop_gradient = False
397
            l2 = MyLayer()
398 399 400 401 402 403 404 405
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
406 407 408
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
409
            l = MyLayer()
M
minqiyang 已提交
410 411 412 413 414 415 416 417 418 419 420 421
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
422 423
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
424 425 426

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
427 428
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
429
            mlp = MLP(input_size=2)
M
minqiyang 已提交
430
            out = mlp(var_inp)
431
            dy_out = out.numpy()
L
lujun 已提交
432
            out.backward()
433
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
434

435 436
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
437
            mlp2 = MLP(input_size=2)
438 439 440 441 442
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
443
            dy_grad2 = mlp2._linear1.weight.gradient()
444

M
minqiyang 已提交
445 446 447
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
448
            mlp = MLP(input_size=2)
M
minqiyang 已提交
449 450
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
451
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
452 453 454 455 456 457 458 459 460 461
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
462 463
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
464 465

        params = mlp.parameters(True)
466 467 468 469
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
470 471 472
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
473 474
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
475 476
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
477
    def test_dygraph_vs_static(self):
478 479
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
480 481 482

        # dynamic graph
        with fluid.dygraph.guard():
483 484 485
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
486 487 488
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
489
            dygraph_result = x.numpy()
X
Xin Pan 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
523 524
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
525 526 527
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
528 529 530 531 532
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
533 534
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
535
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
536
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
537
            outs, pre_hiddens = simple_rnn.forward(var_inp)
538
            dy_out = outs[3].numpy()
L
lujun 已提交
539
            outs[3].backward()
540 541 542
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
543

544 545 546
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
547
            simple_rnn2 = SimpleRNN()
548 549 550 551 552 553 554 555 556
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
557 558 559
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
560
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
561 562 563 564 565 566 567 568 569 570
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
571

M
minqiyang 已提交
572 573 574 575
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
576 577 578 579
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
580

581 582 583 584 585 586 587
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

588 589 590 591 592 593 594 595 596 597 598 599 600
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


645 646
if __name__ == '__main__':
    unittest.main()