test_imperative_basic.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


25
class MyLayer(fluid.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


37
class MLP(fluid.Layer):
X
Xin Pan 已提交
38 39 40 41
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(),
                       3,
42 43 44
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
45
                           initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
46 47
        self._fc2 = FC(self.full_name(),
                       4,
48 49 50
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
51 52 53
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
54
        x = self._fc1(inputs)
X
Xin Pan 已提交
55 56 57 58 59
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


60
class SimpleRNNCell(fluid.Layer):
X
Xin Pan 已提交
61 62 63
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
64 65 66
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
67 68
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
69

70
    def _build_once(self, inputs, pre_hidden):
71 72 73
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
74 75
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
76 77 78
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
79 80
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
81 82 83
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
84 85
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
86 87 88 89 90 91
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

92 93 94 95 96 97
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
121
        hidden = self._helper.append_activation(hidden, act='tanh')
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
141
            attrs={'dim': [],
142 143 144 145 146 147
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


148
class SimpleRNN(fluid.Layer):
X
Xin Pan 已提交
149 150
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
151 152
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
153
            self.full_name(),
J
JiabinYang 已提交
154 155 156 157
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
158 159

    def forward(self, inputs):
J
JiabinYang 已提交
160
        outs = list()
J
JiabinYang 已提交
161 162
        pre_hiddens = list()

163
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
164 165 166 167 168 169
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
170
        for i in range(self.seq_len):
J
JiabinYang 已提交
171 172 173
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
174 175
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
176

J
JiabinYang 已提交
177
        return outs, pre_hiddens
J
JiabinYang 已提交
178 179


M
minqiyang 已提交
180 181 182
class TestImperative(unittest.TestCase):
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
183
        with fluid.dygraph.guard():
M
minqiyang 已提交
184 185
            inputs = []
            for _ in range(10):
L
lujun 已提交
186
                inputs.append(fluid.dygraph.base.to_variable(x))
M
minqiyang 已提交
187 188
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
189
            loss.backward()
190 191 192 193 194 195 196 197 198 199
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
                inputs2.append(fluid.dygraph.base.to_variable(x))
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

200 201
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
202 203 204
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
205 206

    def test_layer(self):
L
lujun 已提交
207
        with fluid.dygraph.guard():
M
minqiyang 已提交
208 209
            cl = core.Layer()
            cl.forward([])
210
            l = fluid.Layer("l")
M
minqiyang 已提交
211 212 213 214
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
215 216
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
217 218 219
            l = MyLayer("my_layer")
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
220
            dy_out = x.numpy()
L
lujun 已提交
221
            x.backward()
222
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
223

224 225 226 227 228 229 230 231 232 233 234
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            l2 = MyLayer("my_layer")
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer("my_layer")
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
251 252
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
253 254 255

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
256 257
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
258 259
            mlp = MLP("mlp")
            out = mlp(var_inp)
260
            dy_out = out.numpy()
L
lujun 已提交
261
            out.backward()
262
            dy_grad = mlp._fc1._w.gradient()
M
minqiyang 已提交
263

264 265 266 267 268 269 270 271 272 273
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            mlp2 = MLP("mlp")
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
            dy_grad2 = mlp2._fc1._w.gradient()

M
minqiyang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP("mlp")
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
291 292
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
293 294

        params = mlp.parameters(True)
295 296 297 298
        self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
        self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
        self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
        self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
M
minqiyang 已提交
299 300 301 302 303 304 305
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
        self.assertEqual(mlp._fc1, sublayers[0])
        self.assertEqual(mlp._fc2, sublayers[1])
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
306 307 308 309 310 311 312 313 314 315
    def test_dygraph_vs_static(self):
        inp1 = np.random.rand(4, 3, 3)
        inp2 = np.random.rand(4, 3, 3)

        # dynamic graph
        with fluid.dygraph.guard():
            if np.sum(inp1) < np.sum(inp2):
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
316
            dygraph_result = x.numpy()
X
Xin Pan 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
                                    feed={'inp1': inp1,
                                          'inp2': inp2},
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
355 356 357 358 359
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
360 361
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
362 363 364
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn.forward(var_inp)
365
            dy_out = outs[3].numpy()
L
lujun 已提交
366
            outs[3].backward()
367 368 369
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
            simple_rnn2 = SimpleRNN("simple_rnn")
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
398

M
minqiyang 已提交
399 400 401 402
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
403 404 405 406
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
407

408 409 410 411 412 413 414
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

415 416 417

if __name__ == '__main__':
    unittest.main()