activation.py 33.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
21
    'Hardswish',
W
WangXi 已提交
22
    'Tanh',
23 24
    'Hardtanh',
    'PReLU',
25
    'ReLU',
26 27
    'ReLU6',
    'SELU',
C
ceci3 已提交
28
    'LeakyReLU',
29
    'Sigmoid',
30
    'Hardsigmoid',
31
    'Softmax',
32 33 34
    'Softplus',
    'Softshrink',
    'Softsign',
35
    'Swish',
36
    'Tanhshrink',
37
    'ThresholdedReLU',
38
    'LogSigmoid',
39
    'LogSoftmax',
40
    'Maxout',
41 42
]

43 44 45
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
46 47
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
Q
Qi Li 已提交
48
from paddle.framework import get_default_dtype
49
from .. import functional as F
50 51


52 53 54 55
class ELU(layers.Layer):
    """
    ELU Activation.

56
    .. math::
57

58 59 60 61 62 63
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
64

65 66 67
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
68

69 70 71
    Examples:
        .. code-block:: python

72 73
            import paddle
            import numpy as np
74

75 76 77 78 79
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

97
    .. math::
98 99 100 101 102

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

103
    .. math::
104 105 106 107 108 109 110

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
111

112 113 114
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
115

116 117 118
    Examples:
        .. code-block:: python

119 120
            import paddle
            import numpy as np
121

122
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
123

124 125
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
126

127 128
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
129 130 131 132 133 134 135 136 137 138 139
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


140 141 142 143 144 145 146
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
147 148 149 150 151 152 153
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
154 155 156 157 158 159 160 161 162 163 164 165 166 167

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

168 169
            import paddle
            import numpy as np
170

171
            paddle.disable_static()
172

173 174 175
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
176 177 178 179 180 181 182 183
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
184
        return F.hardshrink(x, self._threshold, self._name)
185 186


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
class Hardswish(layers.Layer):
    """
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)


W
WangXi 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class Tanh(layers.Layer):
    """
    Tanh Activation.

    .. math::
        Tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)


272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
class Hardtanh(layers.Layer):
    """
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
289

290 291 292
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            m = paddle.nn.Hardtanh()
            out = m(x) # # [-1., 0.3, 1.]
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)


class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
325
            1 - a single parameter `alpha` is used for all input channels;
326 327 328
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
329
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
330
            Default is None. For more information, please refer to :ref:`api_paddle_ParamAttr`.
331 332
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
333

334
    Shape:
Q
Qi Li 已提交
335
        - input: Tensor with any shape. Default dtype is float32.
336
        - output: Tensor with the same shape as input.
337

338 339 340 341 342 343
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

Q
Qi Li 已提交
344
            paddle.set_default_dtype("float64")
345 346 347 348 349 350

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
351
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
373 374
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
375
            is_bias=False,
Q
Qi Li 已提交
376
            default_initializer=Constant(self._init))
377 378 379 380 381

    def forward(self, x):
        return F.prelu(x, self._weight)


382 383 384 385
class ReLU(layers.Layer):
    """
    ReLU Activation.

386
    .. math::
387

388
        ReLU(x) = max(x, 0)
389 390

    Parameters:
391 392 393 394 395 396
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
397

398 399 400
    Examples:
        .. code-block:: python

401 402
            import paddle
            import numpy as np
403

404 405 406
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
407 408
    """

409
    def __init__(self, name=None):
410
        super(ReLU, self).__init__()
411
        self._name = name
412

413 414
    def forward(self, x):
        return F.relu(x, self._name)
415 416


417 418 419 420 421 422
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

423
        ReLU6(x) = min(max(0,x), 6)
424 425 426 427 428 429 430 431 432 433 434 435

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

436 437
            import paddle
            import numpy as np
438

439 440 441
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

458 459 460 461 462
        SELU(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
463 464

    Parameters:
465 466
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
467 468 469 470 471 472 473 474 475 476
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

477 478
            import paddle
            import numpy as np
479

480
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
481 482
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
498 499 500 501
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

502
    .. math::
C
ceci3 已提交
503

504
        LeakyReLU(x)=
505 506 507 508 509 510
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
C
ceci3 已提交
511 512

    Parameters:
513 514
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
515 516
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
517

518 519 520
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
521

C
ceci3 已提交
522 523 524
    Examples:
        .. code-block:: python

525 526
            import paddle
            import numpy as np
C
ceci3 已提交
527

528
            paddle.disable_static()
529

530
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
531
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
532
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
533 534
    """

535
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
536
        super(LeakyReLU, self).__init__()
537
        self._negative_slope = negative_slope
538
        self._name = name
C
ceci3 已提交
539

540
    def forward(self, x):
541
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
542 543


544 545
class Sigmoid(layers.Layer):
    """
546
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
547

548
    .. math::
S
swtkiwi 已提交
549

550
        Sigmoid(x) = \frac{1}{1 + e^{-x}}
551

552 553
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
554

555 556
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
557 558

    Returns:
559
        A callable object of Sigmoid.
560

561
    Examples:
562

563 564 565
        .. code-block:: python

          import numpy as np
566 567 568
          import paddle

          paddle.disable_static()
569
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
570
          m = paddle.nn.Sigmoid()
571
          x = paddle.to_tensor(input_data)
572 573
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
574 575
    """

576
    def __init__(self, name=None):
577
        super(Sigmoid, self).__init__()
578
        self.name = name
579

580 581
    def forward(self, x):
        return F.sigmoid(x, self.name)
582 583


584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
class Hardsigmoid(layers.Layer):
    """
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
            &x/6 + 1/2, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

          m = paddle.nn.Sigmoid()
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
        return F.hardsigmoid(x, self.name)


631 632 633 634 635 636
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

637 638
        Softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
639 640

    Parameters:
641 642
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
643 644 645 646 647 648 649 650 651 652
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

653 654
            import paddle
            import numpy as np
655

656 657 658
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

677 678 679 680 681
        Softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
682 683

    Parameters:
684
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
685 686 687 688 689 690 691 692 693 694
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

695 696
            import paddle
            import numpy as np
697

698 699 700
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

718
        Softsign(x) = \\frac{x}{1 + |x|}
719 720 721 722 723 724 725 726 727 728 729 730

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

731 732
            import paddle
            import numpy as np
733

734 735 736
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
737 738 739 740 741 742 743 744 745 746
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
class Swish(layers.Layer):
    """
    Swish Activation.

    .. math::

        Swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)


782 783 784 785 786 787
class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

788
        Tanhshrink(x) = x - tanh(x)
789 790 791 792 793 794 795 796 797 798 799 800

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

801 802
            import paddle
            import numpy as np
803

804 805 806
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
807 808 809 810 811 812 813 814 815 816
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
class ThresholdedReLU(layers.Layer):
    """
    Thresholded ReLU Activation

    .. math::

        ThresholdedReLU(x) = \\begin{cases}
                               x, \\text{if } x > threshold \\\\
                               0, \\text{otherwise}
                              \\end{cases}

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)


857 858 859
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
860

861
    .. math::
862

863
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
864 865 866 867 868

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
869

870 871 872
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
873

874 875 876
    Examples:
        .. code-block:: python

877
            import paddle
878

879
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
880 881
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
882 883 884 885 886 887 888
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
889
        return F.log_sigmoid(x, self._name)
890 891


892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
class Softmax(layers.Layer):
    """
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)


1015 1016 1017 1018 1019 1020
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1021
        Out[i, j] = log(softmax(x))
1022
                  = log(\\frac{\exp(X[i, j])}{\\sum_j(exp(X[i, j])})
1023 1024

    Parameters:
1025 1026 1027 1028 1029 1030
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1031

1032 1033 1034
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1035 1036 1037 1038

    Examples:
        .. code-block:: python

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                           [3.0, -4.0, 5.0, -6.0],
                           [-7.0, -8.0, 8.0, 9.0]],
                          [[1.0, -2.0, -3.0, 4.0],
                           [-5.0, 6.0, 7.0, -8.0],
                           [6.0, 7.0, 8.0, 9.0]]])
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1059 1060
    """

1061
    def __init__(self, axis=-1, name=None):
1062 1063
        super(LogSoftmax, self).__init__()
        self._axis = axis
1064
        self._name = name
1065

1066 1067
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128


class Maxout(layers.Layer):
    """
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)