activation.py 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
21
    'Hardswish',
W
WangXi 已提交
22
    'Tanh',
23 24
    'Hardtanh',
    'PReLU',
25
    'ReLU',
26 27
    'ReLU6',
    'SELU',
C
ceci3 已提交
28
    'LeakyReLU',
29
    'Sigmoid',
30
    'Hardsigmoid',
31
    'Softmax',
32 33 34
    'Softplus',
    'Softshrink',
    'Softsign',
35
    'Swish',
36
    'Tanhshrink',
37
    'ThresholdedReLU',
38
    'LogSigmoid',
39
    'LogSoftmax',
40
    'Maxout',
41 42
]

43 44 45
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
46 47
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
Q
Qi Li 已提交
48
from paddle.framework import get_default_dtype
49
from .. import functional as F
50 51


52 53 54 55
class ELU(layers.Layer):
    """
    ELU Activation.

56
    .. math::
57

58 59 60 61 62 63
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
64

65 66 67
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
68

69 70 71
    Examples:
        .. code-block:: python

72 73
            import paddle
            import numpy as np
74

75
            paddle.disable_static()
76

77 78 79 80 81
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

99
    .. math::
100 101 102 103 104

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

105
    .. math::
106 107 108 109 110 111 112

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
113

114 115 116
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
117

118 119 120
    Examples:
        .. code-block:: python

121 122
            import paddle
            import numpy as np
123

124
            paddle.disable_static()
125

126
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
127

128 129
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
130

131 132
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
133 134 135 136 137 138 139 140 141 142 143
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


144 145 146 147 148 149 150
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
151 152 153 154 155 156 157
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
158 159 160 161 162 163 164 165 166 167 168 169 170 171

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

172 173
            import paddle
            import numpy as np
174

175
            paddle.disable_static()
176

177 178 179
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
180 181 182 183 184 185 186 187
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
188
        return F.hardshrink(x, self._threshold, self._name)
189 190


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class Hardswish(layers.Layer):
    """
    Hardswish activation

    Hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        Hardswish(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &x, & & \\text{if } x \\geq 3 \\\\
            &\\frac{x(x+3)}{6}, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-4., 5., 1.])
            m = paddle.nn.Hardswish()
            out = m(x) # [0., 5., 0.666667]
    """

    def __init__(self, name=None):
        super(Hardswish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.hardswish(x, self._name)


W
WangXi 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
class Tanh(layers.Layer):
    """
    Tanh Activation.

    .. math::
        Tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)


276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
class Hardtanh(layers.Layer):
    """
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
293

294 295 296
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            m = paddle.nn.Hardtanh()
            out = m(x) # # [-1., 0.3, 1.]
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)


class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
331
            1 - a single parameter `alpha` is used for all input channels;
332 333 334
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
335
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
336 337 338
            Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
339

340
    Shape:
Q
Qi Li 已提交
341
        - input: Tensor with any shape. Default dtype is float32.
342
        - output: Tensor with the same shape as input.
343

344 345 346 347 348 349 350
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()
Q
Qi Li 已提交
351
            paddle.set_default_dtype("float64")
352 353 354 355 356 357

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
358
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
380 381
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
382
            is_bias=False,
Q
Qi Li 已提交
383
            default_initializer=Constant(self._init))
384 385 386 387 388

    def forward(self, x):
        return F.prelu(x, self._weight)


389 390 391 392
class ReLU(layers.Layer):
    """
    ReLU Activation.

393
    .. math::
394

395
        ReLU(x) = max(x, 0)
396 397

    Parameters:
398 399 400 401 402 403
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
404

405 406 407
    Examples:
        .. code-block:: python

408 409
            import paddle
            import numpy as np
410

411
            paddle.disable_static()
412

413 414 415
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
416 417
    """

418
    def __init__(self, name=None):
419
        super(ReLU, self).__init__()
420
        self._name = name
421

422 423
    def forward(self, x):
        return F.relu(x, self._name)
424 425


426 427 428 429 430 431
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

432
        ReLU6(x) = min(max(0,x), 6)
433 434 435 436 437 438 439 440 441 442 443 444

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

445 446
            import paddle
            import numpy as np
447

448 449 450
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

467 468 469 470 471
        SELU(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
472 473

    Parameters:
474 475
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
476 477 478 479 480 481 482 483 484 485
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

486 487
            import paddle
            import numpy as np
488

489
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
490 491
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
507 508 509 510
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

511
    .. math::
C
ceci3 已提交
512

513
        LeakyReLU(x)=
514 515 516 517 518 519
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
C
ceci3 已提交
520 521

    Parameters:
522 523
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
524 525
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
526

527 528 529
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
530

C
ceci3 已提交
531 532 533
    Examples:
        .. code-block:: python

534 535
            import paddle
            import numpy as np
C
ceci3 已提交
536

537
            paddle.disable_static()
538

539
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
540
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
541
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
542 543
    """

544
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
545
        super(LeakyReLU, self).__init__()
546
        self._negative_slope = negative_slope
547
        self._name = name
C
ceci3 已提交
548

549
    def forward(self, x):
550
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
551 552


553 554
class Sigmoid(layers.Layer):
    """
555
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
556

557
    .. math::
S
swtkiwi 已提交
558

559
        Sigmoid(x) = \frac{1}{1 + e^{-x}}
560

561 562
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
563

564 565
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
566 567

    Returns:
568
        A callable object of Sigmoid.
569

570
    Examples:
571

572 573 574
        .. code-block:: python

          import numpy as np
575 576 577
          import paddle

          paddle.disable_static()
578
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
579
          m = paddle.nn.Sigmoid()
580
          x = paddle.to_tensor(input_data)
581 582
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
583 584
    """

585
    def __init__(self, name=None):
586
        super(Sigmoid, self).__init__()
587
        self.name = name
588

589 590
    def forward(self, x):
        return F.sigmoid(x, self.name)
591 592


593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
class Hardsigmoid(layers.Layer):
    """
    This interface is used to construct a callable object of the ``Hardsigmoid`` class.
    This layer calcluate the `hardsigmoid` of input x.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        Hardsigmoid(x)=
            \\left\\{
            \\begin{aligned}
            &0, & & \\text{if } x \\leq -3 \\\\
            &1, & & \\text{if } x \\geq 3 \\\\
            &x/6 + 1/2, & & \\text{otherwise}
            \\end{aligned}
            \\right.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: N-D tensor, available dtype is float32, float64.

    Returns:
        A callable object of Hardsigmoid.

    Examples:

        .. code-block:: python

          import paddle

          m = paddle.nn.Sigmoid()
          x = paddle.to_tensor([-4., 5., 1.])
          out = m(x) # [0., 1, 0.666667]
    """

    def __init__(self, name=None):
        super(Hardsigmoid, self).__init__()
        self.name = name

    def forward(self, x):
        return F.hardsigmoid(x, self.name)


640 641 642 643 644 645
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

646 647
        Softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
648 649

    Parameters:
650 651
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
652 653 654 655 656 657 658 659 660 661
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

662 663
            import paddle
            import numpy as np
664

665 666 667
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

686 687 688 689 690
        Softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
691 692

    Parameters:
693
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
694 695 696 697 698 699 700 701 702 703
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

704 705
            import paddle
            import numpy as np
706

707 708 709
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

727
        Softsign(x) = \\frac{x}{1 + |x|}
728 729 730 731 732 733 734 735 736 737 738 739

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

740 741
            import paddle
            import numpy as np
742

743 744 745
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
746 747 748 749 750 751 752 753 754 755
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
class Swish(layers.Layer):
    """
    Swish Activation.

    .. math::

        Swish(x) = \\frac{x}{1 + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            m = paddle.nn.Swish()
            out = m(x) # [-0.238406, 0., 0.731059]
    """

    def __init__(self, name=None):
        super(Swish, self).__init__()
        self._name = name

    def forward(self, x):
        return F.swish(x, self._name)


791 792 793 794 795 796
class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

797
        Tanhshrink(x) = x - tanh(x)
798 799 800 801 802 803 804 805 806 807 808 809

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

810 811
            import paddle
            import numpy as np
812

813 814 815
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
816 817 818 819 820 821 822 823 824 825
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
class ThresholdedReLU(layers.Layer):
    """
    Thresholded ReLU Activation

    .. math::

        ThresholdedReLU(x) = \\begin{cases}
                               x, \\text{if } x > threshold \\\\
                               0, \\text{otherwise}
                              \\end{cases}

    Parameters:
        threshold (float, optional): The value of threshold for ThresholdedReLU. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            m = paddle.nn.ThresholdedReLU()
            out = m(x) # [2., 0., 0.]
    """

    def __init__(self, threshold=1.0, name=None):
        super(ThresholdedReLU, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.thresholded_relu(x, self._threshold, self._name)


866 867 868
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
869

870
    .. math::
871

872
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
873 874 875 876 877

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
878

879 880 881
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
882

883 884 885
    Examples:
        .. code-block:: python

886
            import paddle
887

888
            paddle.disable_static()
889

890
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
891 892
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
893 894 895 896 897 898 899
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
900
        return F.log_sigmoid(x, self._name)
901 902


903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
class Softmax(layers.Layer):
    """
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
988
            to ``dtype`` before the operation is performed. This is useful for
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)


1034 1035 1036 1037 1038 1039
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

1040
        Out[i, j] = log(softmax(x))
1041
                  = log(\\frac{\exp(X[i, j])}{\\sum_j(exp(X[i, j])})
1042 1043

    Parameters:
1044 1045 1046 1047 1048 1049
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1050

1051 1052 1053
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1054 1055 1056 1057

    Examples:
        .. code-block:: python

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                           [3.0, -4.0, 5.0, -6.0],
                           [-7.0, -8.0, 8.0, 9.0]],
                          [[1.0, -2.0, -3.0, 4.0],
                           [-5.0, 6.0, 7.0, -8.0],
                           [6.0, 7.0, 8.0, 9.0]]])
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1078 1079
    """

1080
    def __init__(self, axis=-1, name=None):
1081 1082
        super(LogSoftmax, self).__init__()
        self._axis = axis
1083
        self._name = name
1084

1085 1086
    def forward(self, x):
        return F.log_softmax(x, self._axis)
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147


class Maxout(layers.Layer):
    """
    Maxout Activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\\\
        &g = groups \\\\
        &s = \\frac{input.size}{num\\_channels} \\\\
        &0 \\le i < \\frac{num\\_channels}{groups} \\\\
        &0 \\le j < s \\\\
        &0 \\le k < groups

    Parameters:
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            m = paddle.nn.Maxout(groups=2)
            out = m(x)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    def __init__(self, groups, axis=1, name=None):
        super(Maxout, self).__init__()
        self._groups = groups
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.maxout(x, self._groups, self._axis, self._name)