Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8d194524
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d194524
编写于
8月 21, 2020
作者:
Q
Qi Li
提交者:
GitHub
8月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hardtanh prelu softmax, test=develop (#26431)
上级
6e5670b8
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
795 addition
and
203 deletion
+795
-203
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+4
-2
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+57
-0
python/paddle/fluid/tests/unittests/test_prelu_op.py
python/paddle/fluid/tests/unittests/test_prelu_op.py
+122
-11
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+46
-33
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+3
-2
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+2
-1
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+273
-107
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+288
-47
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
8d194524
...
...
@@ -1189,6 +1189,7 @@ def chunk_eval(input,
num_correct_chunks)
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
def softmax(input, use_cudnn=False, name=None, axis=-1):
"""
This operator implements the softmax layer. The calculation process is as follows:
...
...
@@ -8610,7 +8611,7 @@ def log(x, name=None):
return out
@
templatedoc(
)
@
deprecated(since="2.0.0", update_to="paddle.nn.functional.relu"
)
def relu(x, name=None):
"""
${comment}
...
...
@@ -9269,7 +9270,7 @@ def pad2d(input,
return out
@
templatedoc(
)
@
deprecated(since="2.0.0", update_to="paddle.nn.functional.elu"
)
def elu(x, alpha=1.0, name=None):
"""
:alias_main: paddle.nn.functional.elu
...
...
@@ -9585,6 +9586,7 @@ def swish(x, beta=1.0, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.nn.functional.prelu")
def prelu(x, mode, param_attr=None, name=None):
"""
:api_attr: Static Graph
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
8d194524
...
...
@@ -534,6 +534,63 @@ class TestHardShrinkAPI(unittest.TestCase):
F
.
hardshrink
(
x_fp16
)
def
ref_hardtanh
(
x
,
min
=-
1.0
,
max
=
1.0
):
out
=
np
.
copy
(
x
)
out
[
np
.
abs
(
x
-
min
)
<
0.005
]
=
min
+
0.02
out
[
np
.
abs
(
x
-
max
)
<
0.005
]
=
max
+
0.02
out
=
np
.
minimum
(
np
.
maximum
(
x
,
min
),
max
)
return
out
class
TestHardtanhAPI
(
unittest
.
TestCase
):
# test paddle.nn.Hardtanh, paddle.nn.functional.hardtanh
def
setUp
(
self
):
self
.
x_np
=
np
.
random
.
uniform
(
-
3
,
3
,
[
10
,
12
]).
astype
(
'float32'
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
10
,
12
])
out1
=
F
.
hardtanh
(
x
)
m
=
paddle
.
nn
.
Hardtanh
()
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_hardtanh
(
self
.
x_np
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_variable
(
self
.
x_np
)
out1
=
F
.
hardtanh
(
x
)
m
=
paddle
.
nn
.
Hardtanh
()
out2
=
m
(
x
)
out_ref
=
ref_hardtanh
(
self
.
x_np
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out1
=
F
.
hardtanh
(
x
,
-
2.0
,
2.0
)
m
=
paddle
.
nn
.
Hardtanh
(
-
2.0
,
2.0
)
out2
=
m
(
x
)
out_ref
=
ref_hardtanh
(
self
.
x_np
,
-
2.0
,
2.0
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_errors
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
F
.
hardtanh
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
hardtanh
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
F
.
hardtanh
(
x_fp16
)
def
ref_softshrink
(
x
,
threshold
=
0.5
):
out
=
np
.
copy
(
x
)
out
=
(
out
<
-
threshold
)
*
(
out
+
threshold
)
+
(
out
>
threshold
)
*
(
...
...
python/paddle/fluid/tests/unittests/test_prelu_op.py
浏览文件 @
8d194524
...
...
@@ -18,23 +18,134 @@ import unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
six
import
paddle.fluid
as
fluid
import
paddle.fluid
.core
as
core
from
paddle.fluid
import
Program
,
program_guard
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.nn.functional
as
F
def
ref_prelu
(
x
,
weight
):
x_t
=
x
.
copy
()
weight
=
weight
.
reshape
(
1
,
-
1
,
1
,
1
)
neg_indices
=
x
<=
0
assert
x
.
shape
==
neg_indices
.
shape
x_t
[
neg_indices
]
=
(
x_t
*
weight
)[
neg_indices
]
return
(
x_t
,
)
def
ref_prelu_nn
(
x
,
num_parameters
,
init
):
weight_np
=
np
.
full
((
num_parameters
),
init
)
return
ref_prelu
(
x
,
weight_np
)
class
TestPReluOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
class
TestFunctionalPReluAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
self
.
x_np
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
1
,
2
,
3
,
4
]).
astype
(
'float32'
)
self
.
weight_np_0
=
np
.
random
.
randn
(
1
).
astype
(
'float32'
)
self
.
weight_np_1
=
np
.
random
.
randn
(
self
.
x_np
.
shape
[
1
]).
astype
(
'float32'
)
def
static_check
(
self
,
weight_np
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
'float32'
)
weight
=
paddle
.
data
(
'Alpha'
,
weight_np
.
shape
,
'float32'
)
out
=
F
.
prelu
(
x
,
weight
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
,
'Alpha'
:
weight_np
},
fetch_list
=
[
out
])
out_ref
=
ref_prelu
(
self
.
x_np
,
weight_np
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
def
dygraph_check
(
self
,
weight_np
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
weight
=
paddle
.
to_tensor
(
weight_np
)
out
=
F
.
prelu
(
x
,
weight
)
out_ref
=
ref_prelu
(
self
.
x_np
,
weight_np
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_static_api
(
self
):
self
.
static_check
(
self
.
weight_np_0
)
self
.
static_check
(
self
.
weight_np_1
)
def
test_dygraph_api
(
self
):
self
.
dygraph_check
(
self
.
weight_np_0
)
self
.
dygraph_check
(
self
.
weight_np_1
)
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
weight_fp32
=
paddle
.
data
(
name
=
'weight_fp32'
,
shape
=
[
1
],
dtype
=
'float32'
)
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
0.1
,
'all'
)
self
.
assertRaises
(
TypeError
,
F
.
prelu
,
x
=
1
,
weight
=
weight_fp32
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
x_int32
,
'all'
)
# support the input dtype is float32
x_fp16
=
fluid
.
layers
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float32'
)
fluid
.
layers
.
prelu
(
x_fp16
,
'all'
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
2
,
3
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
prelu
,
x
=
x_int32
,
weight
=
weight_fp32
)
# support the input dtype is float16
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
2
,
3
],
dtype
=
'float16'
)
F
.
prelu
(
x
=
x_fp16
,
weight
=
weight_fp32
)
class
TestNNPReluAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
self
.
x_np
=
np
.
ones
([
1
,
2
,
3
,
4
]).
astype
(
'float32'
)
def
test_static_api
(
self
):
startup_program
=
paddle
.
static
.
Program
()
train_program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
data
(
name
=
'X'
,
shape
=
self
.
x_np
.
shape
,
dtype
=
'float32'
)
m
=
paddle
.
nn
.
PReLU
()
out
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
exe
.
run
(
startup_program
)
res
=
exe
.
run
(
train_program
,
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
1
,
0.25
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
res
[
0
]),
True
)
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
PReLU
()
out
=
m
(
x
)
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
1
,
0.25
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
PReLU
(
num_parameters
=
self
.
x_np
.
shape
[
1
])
out
=
m
(
x
)
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
self
.
x_np
.
shape
[
1
],
0.25
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
PReLU
(
init
=
0.5
)
out
=
m
(
x
)
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
1
,
0.5
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
PReLU
(
weight_attr
=
fluid
.
ParamAttr
(
name
=
"weight"
))
out
=
m
(
x
)
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
1
,
0.25
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
PReLU
(
weight_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.5
)))
out
=
m
(
x
)
out_ref
=
ref_prelu_nn
(
self
.
x_np
,
1
,
0.5
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
paddle
.
enable_static
()
class
PReluTest
(
OpTest
):
...
...
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
8d194524
...
...
@@ -35,6 +35,15 @@ def stable_softmax(x):
return
exps
/
np
.
sum
(
exps
)
def
ref_softmax
(
x
,
axis
=
None
,
dtype
=
None
):
x_t
=
x
.
copy
()
if
dtype
is
not
None
:
x_t
=
x_t
.
astype
(
dtype
)
if
axis
is
None
:
axis
=
-
1
return
np
.
apply_along_axis
(
stable_softmax
,
axis
,
x_t
)
class
TestSoftmaxOp
(
OpTest
):
def
get_x_shape
(
self
):
return
[
10
,
10
]
...
...
@@ -93,20 +102,6 @@ class TestSoftmaxOp(OpTest):
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
class
TestSoftmaxOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The input type of softmax_op must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([[
-
1
]]),
[[
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
softmax
,
x1
)
# The input dtype of softmax_op must be float16, float32 or float64.
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
softmax
,
x2
)
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
,
shape
=
[
4
],
dtype
=
"float16"
)
fluid
.
layers
.
softmax
(
x3
)
class
TestSoftmaxOp2
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
...
...
@@ -224,41 +219,59 @@ class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
return
[
2
,
3
,
4
,
5
]
class
Test
NnFunctionalSoftmaxApi
(
unittest
.
TestCase
):
class
Test
SoftmaxAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
self
.
x_np
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
2
,
3
,
4
,
5
]).
astype
(
'float32'
)
self
.
out_ref
=
np
.
apply_along_axis
(
stable_softmax
,
-
1
,
self
.
x_np
)
def
test_
api_static
(
self
):
with
p
rogram_guard
(
Program
()):
def
test_
static_check
(
self
):
with
p
addle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
'float32'
)
out
=
F
.
softmax
(
x
)
out1
=
F
.
softmax
(
x
)
m
=
paddle
.
nn
.
Softmax
()
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
self
.
assertEqual
(
np
.
allclose
(
self
.
out_ref
,
res
[
0
]),
True
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
None
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_
api_imperative
(
self
):
def
test_
dygraph_check
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_variable
(
self
.
x_np
)
out
=
F
.
softmax
(
x
)
self
.
assertEqual
(
np
.
allclose
(
self
.
out_ref
,
out
.
numpy
()),
True
)
out
=
F
.
softmax
(
x
,
axis
=
0
)
out_ref
=
np
.
apply_along_axis
(
stable_softmax
,
0
,
self
.
x_np
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
softmax
(
x
)
m
=
paddle
.
nn
.
Softmax
()
out2
=
m
(
x
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
None
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out1
=
F
.
softmax
(
x
,
axis
=
0
)
m
=
paddle
.
nn
.
Softmax
(
axis
=
0
)
out2
=
m
(
x
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=
0
,
dtype
=
None
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out
=
F
.
softmax
(
x
,
dtype
=
np
.
float64
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
np
.
float64
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_error
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The x should be variable and its dtype should be float32, float64.
self
.
assertRaises
(
TypeError
,
F
.
softmax
,
[
1
])
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
softmax
,
x
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
F
.
softmax
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
2
,
3
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
softmax
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
data
(
name
=
'x_fp16'
,
shape
=
[
2
,
3
],
dtype
=
'float16'
)
F
.
softmax
(
x_fp16
)
if
__name__
==
"__main__"
:
...
...
python/paddle/nn/__init__.py
浏览文件 @
8d194524
...
...
@@ -55,14 +55,15 @@ from .decode import gather_tree #DEFINE_ALIAS
from
.layer.activation
import
ELU
from
.layer.activation
import
GELU
from
.layer.activation
import
Hardshrink
# from .layer.activation import PReLU #DEFINE_ALIAS
from
.layer.activation
import
Hardtanh
from
.layer.activation
import
PReLU
from
.layer.activation
import
ReLU
from
.layer.activation
import
ReLU6
#DEFINE_ALIAS
from
.layer.activation
import
SELU
#DEFINE_ALIAS
from
.layer.activation
import
LeakyReLU
#DEFINE_ALIAS
from
.layer.activation
import
Sigmoid
#DEFINE_ALIAS
from
.layer.activation
import
LogSigmoid
# from .layer.activation import Softmax
#DEFINE_ALIAS
from
.layer.activation
import
Softmax
#DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
from
.layer.activation
import
Softshrink
#DEFINE_ALIAS
from
.layer.activation
import
Softsign
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
8d194524
...
...
@@ -30,13 +30,14 @@ from .activation import elu #DEFINE_ALIAS
from
.activation
import
erf
#DEFINE_ALIAS
from
.activation
import
gelu
#DEFINE_ALIAS
from
.activation
import
hardshrink
#DEFINE_ALIAS
from
.activation
import
hardtanh
#DEFINE_ALIAS
from
.activation
import
hard_sigmoid
#DEFINE_ALIAS
from
.activation
import
hard_swish
#DEFINE_ALIAS
from
.activation
import
hsigmoid
#DEFINE_ALIAS
from
.activation
import
leaky_relu
#DEFINE_ALIAS
from
.activation
import
logsigmoid
#DEFINE_ALIAS
from
.activation
import
maxout
#DEFINE_ALIAS
# from .activation import prelu
#DEFINE_ALIAS
from
.activation
import
prelu
#DEFINE_ALIAS
from
.activation
import
relu
#DEFINE_ALIAS
from
.activation
import
relu6
#DEFINE_ALIAS
from
.activation
import
selu
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
8d194524
...
...
@@ -30,13 +30,14 @@ __all__ = [
'erf'
,
'gelu'
,
'hardshrink'
,
'hardtanh'
,
'hard_sigmoid'
,
'hard_swish'
,
'hsigmoid'
,
'leaky_relu'
,
'logsigmoid'
,
'maxout'
,
#
'prelu',
'prelu'
,
'relu'
,
'relu6'
,
'selu'
,
...
...
@@ -49,7 +50,7 @@ __all__ = [
'swish'
,
'tanhshrink'
,
'thresholded_relu'
,
'log_softmax'
'log_softmax'
,
]
import
warnings
...
...
@@ -64,7 +65,7 @@ def elu(x, alpha=1.0, name=None):
"""
elu activation.
..
math::
.. math::
elu(x) = max(0, x) + min(0,
\\
alpha * (e^{x}-1))
...
...
@@ -80,16 +81,16 @@ def elu(x, alpha=1.0, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
out = F.elu(x, alpha=0.2)
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
out = F.elu(x, alpha=0.2)
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
"""
if
in_dygraph_mode
():
...
...
@@ -111,10 +112,15 @@ def gelu(x, approximate=False, name=None):
gelu activation.
if approximate is True
.. math::
.. math::
gelu(x) = 0.5 * x * (1 + tanh(
\\
sqrt{
\\
frac{2}{
\\
pi}} * (x + 0.044715x^{3})))
else
.. math::
.. math::
gelu(x) = 0.5 * x * (1 + erf(
\\
frac{x}{
\\
sqrt{2}}))
Parameters:
...
...
@@ -129,23 +135,15 @@ def gelu(x, approximate=False, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
data = np.random.randn(2, 3).astype("float32")
x = paddle.to_tensor(data)
import paddle
import paddle.nn.functional as F
import numpy as np
out = F.gelu(x
)
paddle.disable_static(
)
data
# array([[ 0.87165993, -1.0541513 , -0.37214822],
# [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32)
out
# array([[ 0.70456535, -0.15380788, -0.13207214],
# [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32)
x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
out1 = F.gelu(x) # [-0.158655 0.345731 0.841345 1.39979]
out2 = F.gelu(x, True) # [-0.158808 0.345714 0.841192 1.39957]
"""
if
in_dygraph_mode
():
...
...
@@ -187,17 +185,16 @@ def hardshrink(x, threshold=0.5, name=None):
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_variable
(np.array([-1, 0.3, 2.5]))
out = F.hardshrink(x) # [-1., 0., 2.5]
x = paddle.to_tensor
(np.array([-1, 0.3, 2.5]))
out = F.hardshrink(x) # [-1., 0., 2.5]
"""
if
in_dygraph_mode
():
...
...
@@ -215,6 +212,58 @@ def hardshrink(x, threshold=0.5, name=None):
return
out
def
hardtanh
(
x
,
min
=-
1.0
,
max
=
1.0
,
name
=
None
):
"""
hardtanh activation
.. math::
hardtanh(x)=
\\
begin{cases}
max,
\\
text{if } x > max
\\\\
min,
\\
text{if } x < min
\\\\
x,
\\
text{otherwise}
\\
end{cases}
Args:
x (Tensor): The input Tensor with data type float32, float64.
min (float, optional): The minimum value of the linear region range. Default is -1.
max (float, optional): The maximum value of the linear region range. Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
out = F.hardtanh(x) # [-1., 0.3, 1.]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
brelu
(
x
,
't_min'
,
min
,
't_max'
,
max
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'hardtanh'
)
helper
=
LayerHelper
(
'hardtanh'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'brelu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
't_min'
:
min
,
't_max'
:
max
})
return
out
def
hsigmoid
(
input
,
label
,
weight
,
...
...
@@ -272,7 +321,6 @@ def hsigmoid(input,
Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.
Examples:
.. code-block:: python
from paddle import fluid, nn
...
...
@@ -338,11 +386,86 @@ def hsigmoid(input,
return
out
def
prelu
(
x
,
weight
,
name
=
None
):
"""
prelu activation.
.. math::
prelu(x) = max(0, x) + weight * min(0, x)
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
weight (Tensor): The learnable parameter with data type same as ``x``.
The weight shape is [1] or [in], where `in` is the input channel of ``x``.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
data = np.array([[[[-2.0, 3.0, -4.0, 5.0],
[ 3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[ 1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[ 6.0, 7.0, 8.0, 9.0]]]], 'float32')
x = paddle.to_tensor(data)
w = paddle.to_tensor(np.array([0.25]).astype('float32'))
out = F.prelu(x, w)
# [[[[-0.5 , 3. , -1. , 5. ],
# [ 3. , -1. , 5. , -1.5 ],
# [-1.75, -2. , 8. , 9. ]],
# [[ 1. , -0.5 , -0.75, 4. ],
# [-1.25, 6. , 7. , -2. ],
# [ 6. , 7. , 8. , 9. ]]]]
"""
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'prelu'
)
check_variable_and_dtype
(
weight
,
'weight'
,
[
'float16'
,
'float32'
,
'float64'
],
'prelu'
)
helper
=
LayerHelper
(
'prelu'
,
**
locals
())
assert
len
(
weight
.
shape
)
==
1
,
"The dim count of weight shape should be 1 in prelu()."
# NOTE(): The input of this API should be ``N,C,...`` format,
# which means x.shape[0] is batch_size and x.shape[0] is channel.
mode
=
'all'
if
weight
.
shape
[
0
]
>
1
:
assert
len
(
x
.
shape
)
>
1
,
"The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
assert
weight
.
shape
[
0
]
==
x
.
shape
[
1
],
"The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
mode
=
'channel'
if
in_dygraph_mode
():
return
core
.
ops
.
prelu
(
x
,
weight
,
'mode'
,
mode
)
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
"Alpha"
:
weight
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"mode"
:
mode
})
return
out
def
relu
(
x
,
name
=
None
):
"""
ReLU A
ctivation.
relu a
ctivation.
.. math:
.. math:
:
out = max(x, 0)
...
...
@@ -357,14 +480,14 @@ def relu(x, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
out = F.relu(x) # [0., 0., 1.]
x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
out = F.relu(x) # [0., 0., 1.]
"""
if
in_dygraph_mode
():
...
...
@@ -381,9 +504,9 @@ def logsigmoid(x, name=None):
"""
logsigmoid activation.
.. math:
.. math:
:
logsigmoid(x) =
\log
\f
rac{1}{1 + e^{-x}}
logsigmoid(x) =
log
\
\
frac{1}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
...
...
@@ -396,14 +519,14 @@ def logsigmoid(x, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
out = F.logsigmoid(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376
]
x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
out = F.logsigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499
]
"""
if
in_dygraph_mode
():
...
...
@@ -514,7 +637,7 @@ def selu(x,
return
out
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
def
softmax
(
x
,
axis
=-
1
,
dtype
=
None
,
name
=
None
):
"""
This operator implements the softmax layer. The calculation process is as follows:
...
...
@@ -541,7 +664,7 @@ def softmax(x, axis=-1, name=None):
.. math::
out[i, j] =
\\
frac{\exp(x[i, j])}{
\sum_j(exp(x[i, j])}
softmax[i, j] =
\\
frac{
\\
exp(x[i, j])}{
\
\
sum_j(exp(x[i, j])}
Example:
...
...
@@ -590,44 +713,89 @@ def softmax(x, axis=-1, name=None):
[0.26762315, 0.26762315, 0.26762315, 0.26762315],
[0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
Args:
x (Tensor): The input multi-dimension Tensor with data type float32, float64.
axis (int, optional): The axis along which to perform softmax calculations.
It should be in range [-D, D), where D is the dimensions of ``x`` .
When ``axis`` < 0, it works the same way as :math:`axis + D` .
Default is -1.
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
axis (int, optional): The axis along which to perform log_softmax
calculations. It should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` < 0, it works the same way as
:math:`axis + D` . Default is -1.
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
type of the output tensor. If dtype is specified, ``x`` is casted
to ``dtype`` before the operation is performed. This is useful for
preventing data type overflows. Supported dtype: float32, float64.
If ``dtype`` is None, the output Tensor has the same dtype as x.
Default is None.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
A Tensor with the same shape and data type (use ``dtype`` if it is
specified) as x.
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = np.array([[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.to_tensor(x)
out = F.softmax(x)
# [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
# [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
x = np.array([[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.to_tensor(x)
out1 = F.softmax(x)
out2 = F.softmax(x, dtype='float64')
# out1's data type is float32; out2's data type is float64
# out1 and out2's value is as follows:
# [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
# [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
"""
return
paddle
.
fluid
.
layers
.
softmax
(
input
=
x
,
axis
=
axis
,
name
=
name
)
if
(
dtype
is
not
None
)
and
(
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
)):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
use_cudnn
=
True
if
axis
is
-
1
else
False
if
in_dygraph_mode
():
outs_cast
=
x
if
dtype
is
None
\
else
core
.
ops
.
cast
(
x
,
'in_dtype'
,
x
.
dtype
,
'out_dtype'
,
dtype
)
return
core
.
ops
.
softmax
(
outs_cast
,
'axis'
,
axis
,
'use_cudnn'
,
use_cudnn
)
if
dtype
is
None
:
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'softmax'
)
else
:
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
],
'softmax'
,
'If dtype is not None, it only support float32 or float64.'
)
helper
=
LayerHelper
(
"softmax"
,
**
locals
())
outs_cast
=
x
if
dtype
is
not
None
:
outs_cast
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
outs_cast
},
attrs
=
{
'in_dtype'
:
x
.
dtype
,
'out_dtype'
:
dtype
})
outs_softmax
=
helper
.
create_variable_for_type_inference
(
outs_cast
.
dtype
)
helper
.
append_op
(
type
=
'softmax'
,
inputs
=
{
'X'
:
outs_cast
},
outputs
=
{
'Out'
:
outs_softmax
},
attrs
=
{
'axis'
:
axis
,
'use_cudnn'
:
use_cudnn
})
return
outs_softmax
def
softplus
(
x
,
beta
=
1
,
threshold
=
20
,
name
=
None
):
...
...
@@ -820,7 +988,7 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
.. math::
Out[i, j] = log(softmax(x))
= log(
\
\
frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
= log(
\f
rac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
...
...
@@ -844,33 +1012,31 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = np.array([[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.to_tensor(x)
out1 = F.log_softmax(x)
out2 = F.log_softmax(x, dtype='float64')
# out1's data type is float32; out2's data type is float64
# out1 and out2's value is as follows:
# [[[ -7.1278396 -2.1278396 -9.127839 -0.12783948]
# [ -2.1270514 -9.127051 -0.12705144 -11.127051 ]
# [-16.313261 -17.313261 -1.3132617 -0.31326184]]
# [[ -3.0518122 -6.051812 -7.051812 -0.051812 ]
# [-12.313267 -1.3132664 -0.3132665 -15.313267 ]
# [ -3.4401896 -2.4401896 -1.4401896 -0.44018966]]]
"""
x = np.array([[[-2.0, 3.0, -4.0, 5.0],
[3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.to_tensor(x)
out1 = F.log_softmax(x)
out2 = F.log_softmax(x, dtype='float64')
# out1's data type is float32; out2's data type is float64
# out1 and out2's value is as follows:
# [[[ -7.1278396 -2.1278396 -9.127839 -0.12783948]
# [ -2.1270514 -9.127051 -0.12705144 -11.127051 ]
# [-16.313261 -17.313261 -1.3132617 -0.31326184]]
# [[ -3.0518122 -6.051812 -7.051812 -0.051812 ]
# [-12.313267 -1.3132664 -0.3132665 -15.313267 ]
# [ -3.4401896 -2.4401896 -1.4401896 -0.44018966]]]
"""
if
axis
is
None
:
axis
=
-
1
if
(
dtype
is
not
None
)
and
(
not
isinstance
(
dtype
,
core
.
VarDesc
.
VarType
)):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
8d194524
...
...
@@ -18,25 +18,28 @@ __all__ = [
'ELU'
,
'GELU'
,
'Hardshrink'
,
# 'PReLU',
'Hardtanh'
,
'PReLU'
,
'ReLU'
,
'ReLU6'
,
'SELU'
,
'LeakyReLU'
,
'Sigmoid'
,
#
'Softmax',
'Softmax'
,
'Softplus'
,
'Softshrink'
,
'Softsign'
,
'Tanhshrink'
,
'LogSigmoid'
,
'LogSoftmax'
,
'HSigmoid'
'HSigmoid'
,
]
from
...fluid.dygraph
import
layers
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.param_attr
import
ParamAttr
from
...fluid.initializer
import
Constant
from
..
import
functional
as
F
...
...
@@ -44,7 +47,7 @@ class ELU(layers.Layer):
"""
ELU Activation.
..
math::
.. math::
ELU(x) = max(0, x) + min(0,
\\
alpha * (e^{x}-1))
...
...
@@ -60,16 +63,16 @@ class ELU(layers.Layer):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
m = paddle.nn.ELU(0.2)
out = m(x)
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
m = paddle.nn.ELU(0.2)
out = m(x)
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
"""
def
__init__
(
self
,
alpha
=
1.0
,
name
=
None
):
...
...
@@ -87,13 +90,13 @@ class GELU(layers.Layer):
If approximate is True
..
math::
.. math::
GELU(x) = 0.5 * x * (1 + tanh(
\\
sqrt{
\\
frac{2}{
\\
pi}} * (x + 0.044715x^{3})))
else
..
math::
.. math::
GELU(x) = 0.5 * x * (1 + erf(
\\
frac{x}{
\\
sqrt{2}}))
...
...
@@ -109,23 +112,18 @@ class GELU(layers.Layer):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
import paddle
import numpy as np
data = np.random.randn(2, 3).astype("float32")
x = paddle.to_tensor(data)
paddle.disable_static()
m = paddle.nn.GELU()
out = m(x)
x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
m = paddle.nn.GELU()
out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
data
# array([[ 0.87165993, -1.0541513 , -0.37214822],
# [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32)
out
# array([[ 0.70456535, -0.15380788, -0.13207214],
# [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32)
m = paddle.nn.GELU(True)
out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
"""
def
__init__
(
self
,
approximate
=
False
,
name
=
None
):
...
...
@@ -170,7 +168,7 @@ class Hardshrink(layers.Layer):
paddle.disable_static()
x = paddle.to_
variable
(np.array([-1, 0.3, 2.5]))
x = paddle.to_
tensor
(np.array([-1, 0.3, 2.5]))
m = paddle.nn.Hardshrink()
out = m(x) # [-1., 0., 2.5]
"""
...
...
@@ -184,6 +182,51 @@ class Hardshrink(layers.Layer):
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
Hardtanh
(
layers
.
Layer
):
"""
Hardtanh Activation
.. math::
Hardtanh(x)=
\\
begin{cases}
max,
\\
text{if } x > max
\\\\
min,
\\
text{if } x < min
\\\\
x,
\\
text{otherwise}
\\
end{cases}
Parameters:
min (float, optional): The value of min for Hardtanh. Default is -1.
max (float, optional): The value of max for Hardtanh. Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
m = paddle.nn.Hardtanh()
out = m(x) # # [-1., 0.3, 1.]
"""
def
__init__
(
self
,
min
=-
1.0
,
max
=
1.0
,
name
=
None
):
super
(
Hardtanh
,
self
).
__init__
()
self
.
_min
=
min
self
.
_max
=
max
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
hardtanh
(
x
,
self
.
_min
,
self
.
_max
,
self
.
_name
)
class
HSigmoid
(
layers
.
Layer
):
"""
:alias_main: paddle.nn.HSigmoid
...
...
@@ -320,11 +363,78 @@ class HSigmoid(layers.Layer):
return
out
class
PReLU
(
layers
.
Layer
):
"""
PReLU Activation.
.. math::
PReLU(x) = max(0, x) + weight * min(0, x)
Parameters:
num_parameters (int, optional): Number of `weight` to learn. The supported values are:
1 - a single parameter `alpha` is used for all input channels;
Number of channels - a seperate `alpha` is used for each input channel.
Default is 1.
init (float, optional): Init value of learnable `weight`. Default is 0.25.
weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
data = np.array([[[[-2.0, 3.0, -4.0, 5.0],
[ 3.0, -4.0, 5.0, -6.0],
[-7.0, -8.0, 8.0, 9.0]],
[[ 1.0, -2.0, -3.0, 4.0],
[-5.0, 6.0, 7.0, -8.0],
[ 6.0, 7.0, 8.0, 9.0]]]], 'float32')
x = paddle.to_tensor(data)
m = paddle.nn.PReLU(1, 0.25)
out = m(x)
# [[[[-0.5 , 3. , -1. , 5. ],
# [ 3. , -1. , 5. , -1.5 ],
# [-1.75, -2. , 8. , 9. ]],
# [[ 1. , -0.5 , -0.75, 4. ],
# [-1.25, 6. , 7. , -2. ],
# [ 6. , 7. , 8. , 9. ]]]]
"""
def
__init__
(
self
,
num_parameters
=
1
,
init
=
0.25
,
weight_attr
=
None
,
name
=
None
):
super
(
PReLU
,
self
).
__init__
()
self
.
_num_parameters
=
num_parameters
self
.
_init
=
init
self
.
_weight_attr
=
weight_attr
self
.
_name
=
name
self
.
_weight
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
[
num_parameters
],
dtype
=
'float32'
,
is_bias
=
False
,
default_initializer
=
Constant
(
init
))
def
forward
(
self
,
x
):
return
F
.
prelu
(
x
,
self
.
_weight
)
class
ReLU
(
layers
.
Layer
):
"""
ReLU Activation.
.. math:
.. math:
:
ReLU(x) = max(x, 0)
...
...
@@ -339,14 +449,14 @@ class ReLU(layers.Layer):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
m = paddle.nn.ReLU()
out = m(x) # [0., 0., 1.]
x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
m = paddle.nn.ReLU()
out = m(x) # [0., 0., 1.]
"""
def
__init__
(
self
,
name
=
None
):
...
...
@@ -488,7 +598,7 @@ class Sigmoid(layers.Layer):
.. math::
output =
\
\
frac{1}{1 + e^{-x}}
Sigmoid(x) =
\f
rac{1}{1 + e^{-x}}
Parameters:
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
...
...
@@ -509,7 +619,7 @@ class Sigmoid(layers.Layer):
paddle.disable_static()
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
m = paddle.nn.Sigmoid()
x = paddle.to_
variable
(input_data)
x = paddle.to_
tensor
(input_data)
output = m(x)
print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
"""
...
...
@@ -687,9 +797,9 @@ class LogSigmoid(layers.Layer):
"""
LogSigmoid Activation.
.. math:
.. math:
:
LogSigmoid(x) =
\log
\f
rac{1}{1 + e^{-x}}
LogSigmoid(x) =
log
\
\
frac{1}{1 + e^{-x}}
Parameters:
x (Tensor): The input Tensor with data type float32, or float64.
...
...
@@ -703,14 +813,14 @@ class LogSigmoid(layers.Layer):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
m = paddle.nn.LogSigmoid()
out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376
]
x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
m = paddle.nn.LogSigmoid()
out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499
]
"""
def
__init__
(
self
,
name
=
None
):
...
...
@@ -721,6 +831,137 @@ class LogSigmoid(layers.Layer):
return
F
.
logsigmoid
(
x
,
self
.
_name
)
class
Softmax
(
layers
.
Layer
):
"""
Softmax Activation.
This operator implements the softmax layer. The calculation process is as follows:
1. The dimension :attr:`axis` of ``x`` will be permuted to the last.
2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
and the first dimension(column length) is the product of all other dimensions
of ``x``. For each row of the matrix, the softmax operator squashes the
K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
vector of real values in the range [0, 1] that add up to 1.
3. After the softmax operation is completed, the inverse operations of steps 1 and 2
are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in the matrix, we have:
.. math::
Softmax[i, j] =
\\
frac{
\\
exp(x[i, j])}{
\\
sum_j(exp(x[i, j])}
Example:
.. code-block:: text
Case 1:
Input:
x.shape = [2, 3, 4]
x.data = [[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]]
Attrs:
axis = -1
Output:
out.shape = [2, 3, 4]
out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.07232949, 0.19661193, 0.19661193, 0.53444665]],
[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
[0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
Case 2:
Input:
x.shape = [2, 3, 4]
x.data = [[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]]
Attrs:
axis = 1
Output:
out.shape = [2, 3, 4]
out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
[0.01786798, 0.01786798, 0.04661262, 0.04661262],
[0.97555875, 0.97555875, 0.93623955, 0.93623955]],
[[0.00490169, 0.00490169, 0.00490169, 0.00490169],
[0.26762315, 0.26762315, 0.26762315, 0.26762315],
[0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
Parameters:
axis (int, optional): The axis along which to perform log_softmax
calculations. It should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` < 0, it works the same way as
:math:`axis + D` . Default is -1.
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
type of the output tensor. If dtype is specified, ``x`` is casted
to ``dtype`` before the operation is performed. This is useful for
preventing data type overflows. Supported dtype: float32, float64.
If ``dtype`` is None, the output Tensor has the same dtype as x.
Default is None.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[[2.0, 3.0, 4.0, 5.0],
[3.0, 4.0, 5.0, 6.0],
[7.0, 8.0, 8.0, 9.0]],
[[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[6.0, 7.0, 8.0, 9.0]]], 'float32')
x = paddle.to_tensor(x)
m = paddle.nn.Softmax()
out = m(x)
# [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
# [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
# [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
"""
def
__init__
(
self
,
axis
=-
1
,
name
=
None
):
super
(
Softmax
,
self
).
__init__
()
self
.
_axis
=
axis
self
.
_dtype
=
None
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
softmax
(
x
,
self
.
_axis
,
self
.
_dtype
,
self
.
_name
)
class
LogSoftmax
(
layers
.
Layer
):
"""
This operator implements the log_softmax layer. The calculation process is as follows:
...
...
@@ -728,7 +969,7 @@ class LogSoftmax(layers.Layer):
.. math::
Out[i, j] = log(softmax(x))
= log(
\
\
frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
= log(
\f
rac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
Parameters:
axis (int, optional): The axis along which to perform log_softmax
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录