activation.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18
    'Hardshrink',
19
    #       'PReLU',
20
    'ReLU',
C
ceci3 已提交
21
    'LeakyReLU',
22
    'Sigmoid',
23
    #       'Softmax',
24
    'LogSoftmax',
25
    'HSigmoid'
26 27
]

28 29 30
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
31
from .. import functional as F
32 33


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_variable(np.array([-1, 0.3, 2.5]))
        m = paddle.nn.Hardshrink()
        out = m(x) # [-1., 0., 2.5]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
78
        return F.hardshrink(x, self._threshold, self._name)
79 80


81 82
class HSigmoid(layers.Layer):
    """
83 84
	:alias_main: paddle.nn.HSigmoid
	:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
205
        out = F.hsigmoid(
206 207 208 209 210 211 212 213 214 215
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

216 217 218

class ReLU(layers.Layer):
    """
219 220
	:alias_main: paddle.nn.ReLU
	:alias: paddle.nn.ReLU,paddle.nn.layer.ReLU,paddle.nn.layer.activation.ReLU
S
swtkiwi 已提交
221

222 223 224 225 226 227 228 229 230 231 232
    ReLU Activation.

    .. math:

        out = max(x, 0)

    Parameters:
        inplace (bool, optional): If inplace is True, the input and output of 
            ``ReLU`` are the same variable. Otherwise, the input and output of
            ``ReLU`` are different variables. Default False. Note that if x is
            more than one OPs' input, inplace must be False.
233
    
234 235
    Returns:
        None
236
    
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn as nn
          import numpy as np

          data = np.array([-2, 0, 1]).astype('float32')
          my_relu = nn.ReLU()
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = my_relu(data)  # [0, 0, 1]
    """

    def __init__(self, inplace=False):
        super(ReLU, self).__init__()
        self._inplace = inplace

    def forward(self, input):
256
        return F.relu(input, self._inplace)
257 258


C
ceci3 已提交
259 260 261 262 263 264 265 266 267
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

    .. math:

        out = max(x, alpha * x)

    Parameters:
268 269 270 271
        alpha (float, optional): Slope of the activation function at :math:`x < 0` .
            Default: 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
C
ceci3 已提交
272
    
273 274 275
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
276 277 278 279
    
    Examples:
        .. code-block:: python

280 281
        import paddle
        import numpy as np
C
ceci3 已提交
282

283
        paddle.disable_static()
284 285

        lrelu = paddle.nn.LeakyReLU()
286
        x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
287
        out = lrelu(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
288 289
    """

290
    def __init__(self, alpha=1e-2, name=None):
C
ceci3 已提交
291 292
        super(LeakyReLU, self).__init__()
        self._alpha = alpha
293
        self._name = name
C
ceci3 已提交
294

295
    def forward(self, x):
296
        return F.leaky_relu(x, self._alpha, self._name)
C
ceci3 已提交
297 298


299 300
class Sigmoid(layers.Layer):
    """
301 302 303
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
    
    .. math::
S
swtkiwi 已提交
304

305
        output = \\frac{1}{1 + e^{-x}}
306
    
307 308
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
309

310 311
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
312 313

    Returns:
314
        A callable object of Sigmoid.
315 316
    
    Examples:
317

318 319 320
        .. code-block:: python

          import numpy as np
321 322 323
          import paddle

          paddle.disable_static()
324
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
325 326 327 328
          m = paddle.nn.Sigmoid()
          x = paddle.to_variable(input_data)
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
329 330
    """

331
    def __init__(self, name=None):
332
        super(Sigmoid, self).__init__()
333
        self.name = name
334

335 336
    def forward(self, x):
        return F.sigmoid(x, self.name)
337 338


339 340 341 342 343 344 345 346 347 348
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
349 350 351 352 353 354
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
355
 
356 357 358
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
359 360 361 362

    Examples:
        .. code-block:: python

363 364
        import paddle
        import numpy as np
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        paddle.disable_static()

        x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                        [3.0, -4.0, 5.0, -6.0],
                        [-7.0, -8.0, 8.0, 9.0]],
                        [[1.0, -2.0, -3.0, 4.0],
                        [-5.0, 6.0, 7.0, -8.0],
                        [6.0, 7.0, 8.0, 9.0]]])
        m = paddle.nn.LogSoftmax()
        x = paddle.to_tensor(x)
        out = m(x)
        # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
        #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
        #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
        #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
        #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
        #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
383 384
    """

385
    def __init__(self, axis=-1, name=None):
386 387
        super(LogSoftmax, self).__init__()
        self._axis = axis
388
        self._name = name
389

390 391
    def forward(self, x):
        return F.log_softmax(x, self._axis)