run_program_op.h 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
21
#include <unordered_map>
22
#include <unordered_set>
23 24 25
#include <utility>
#include <vector>

26
#include "paddle/fluid/framework/executor_cache.h"
27
#include "paddle/fluid/framework/op_desc.h"
28 29 30 31 32 33
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/variable.h"
34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
37 38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/operators/cuda_graph_with_in_out.h"
#endif
40 41

DECLARE_bool(use_mkldnn);
42 43 44 45 46 47

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using BlockDesc = framework::BlockDesc;
48
using ProgramDesc = framework::ProgramDesc;
49 50 51

using Variable = framework::Variable;
using LoDTensor = framework::LoDTensor;
52
using SelectedRows = phi::SelectedRows;
53 54 55 56 57 58 59 60 61 62

namespace details {

// all input vars should be LoDTensor & is initialized
static void CheckInputVarStatus(const Variable &var,
                                const std::string &var_name) {
  PADDLE_ENFORCE_EQ(
      var.IsType<LoDTensor>(), true,
      platform::errors::InvalidArgument(
          "The input variable %s of "
63
          "RunProgram(Grad)Op holds "
64 65 66 67 68
          "wrong type. Expect type is LoDTensor, but receive type is %s.",
          var_name, platform::demangle(framework::ToTypeName(var.Type()))));
  PADDLE_ENFORCE_EQ(
      var.Get<LoDTensor>().IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor in input variable %s of "
69
                                        "RunProgram(Grad)Op "
70 71 72 73 74 75 76 77 78 79 80 81
                                        "is not initialized.",
                                        var_name));
}

static void CheckOutputVarStatus(const Variable &src_var,
                                 const Variable &dst_var,
                                 const std::string &var_name) {
  if (dst_var.IsType<LoDTensor>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
82
            "RunProgram(Grad)Op's internal scope holds "
83 84 85 86 87 88
            "wrong type. Expect type is LoDTensor, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<LoDTensor>().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
89
                          "RunProgram(Grad)Op's internal "
90 91
                          "scope is not initialized.",
                          var_name));
92
  } else if (dst_var.IsType<phi::SelectedRows>()) {
93
    PADDLE_ENFORCE_EQ(
94
        src_var.IsType<phi::SelectedRows>(), true,
95 96
        platform::errors::InvalidArgument(
            "The output variable %s get from "
97
            "RunProgram(Grad)Op's internal scope holds "
98 99 100
            "wrong type. Expect type is SelectedRows, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
101
    PADDLE_ENFORCE_EQ(src_var.Get<phi::SelectedRows>().value().IsInitialized(),
102 103 104 105 106 107
                      true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          var_name));
108 109 110

  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
111
        "The RunProgram(Grad)Op only support output "
112 113 114 115 116 117 118 119
        "variable of type LoDTensor or SelectedRows, "
        "but received variable %s's type is %s",
        var_name, platform::demangle(framework::ToTypeName(dst_var.Type()))));
  }
}

static void VariableShare(const Variable &src_var, Variable *dst_var) {
  // The previous check ensures that the variable type can only be LoDTensor or
120
  // SelectedRows.
121 122
  if (src_var.IsType<LoDTensor>()) {
    auto *lod_tensor = dst_var->GetMutable<LoDTensor>();
123
    lod_tensor->ShareDataWith(src_var.Get<LoDTensor>());
124
    lod_tensor->set_lod(src_var.Get<LoDTensor>().lod());
125 126
  } else if (src_var.IsType<phi::SelectedRows>()) {
    auto *selected_rows = dst_var->GetMutable<phi::SelectedRows>();
127
    selected_rows->mutable_value()->ShareDataWith(
128 129 130
        src_var.Get<phi::SelectedRows>().value());
    selected_rows->set_rows(src_var.Get<phi::SelectedRows>().rows());
    selected_rows->set_height(src_var.Get<phi::SelectedRows>().height());
131 132 133
  }
}

134
static void ShareVarsIntoScope(const std::vector<Variable *> &vars,
135 136 137
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
  for (size_t i = 0; i < vars.size(); ++i) {
138 139 140
    if (var_names[i] == "Fake_var") {
      continue;
    }
141 142 143
    auto *var = scope->Var(var_names[i]);
    CheckInputVarStatus(*vars[i], var_names[i]);
    VariableShare(*vars[i], var);
144 145 146
  }
}

147 148
static void ShareVarsFromScope(const std::vector<Variable *> &vars,
                               const std::vector<std::string> &var_names,
149
                               const BlockDesc &global_block,
150
                               framework::Scope *scope) {
151
  for (size_t i = 0; i < vars.size(); ++i) {
152 153 154 155
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't findthem in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
156
    if (var_names[i] == framework::kEmptyVarName ||
157
        var_names[i] == "Fake_var" || !global_block.HasVar(var_names[i])) {
158
      VLOG(2) << "find variable name is " << var_names[i] << ", skip it!";
159 160 161 162
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
163
    auto *var = scope->FindVar(var_names[i]);
164 165
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("The output variable %s is not in "
166
                                        "RunProgram(Grad)Op'"
167 168 169
                                        "s internal scope.",
                                        var_names[i]));
    CheckOutputVarStatus(*var, *vars[i], var_names[i]);
170
    VariableShare(*var, vars[i]);
171 172 173
  }
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#ifdef PADDLE_WITH_CUDA
static cudaStreamCaptureMode StringToCUDAGraphCaptureMode(
    const std::string &mode) {
  if (mode == "global") {
    return cudaStreamCaptureModeGlobal;
  } else if (mode == "thread_local") {
    return cudaStreamCaptureModeThreadLocal;
  } else if (mode == "relaxed") {
    return cudaStreamCaptureModeRelaxed;
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "Unsupported CUDA Graph capture mode %s", mode));
  }
}
#endif

190 191 192 193 194 195
}  // namespace details

template <typename DeviceContext, typename T>
class RunProgramOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    const auto &capture_mode = ctx.Attr<std::string>("cuda_graph_capture_mode");
    auto is_test = ctx.Attr<bool>("is_test");
    if (capture_mode.empty()) {
      ComputeImpl(ctx, is_test, false);
      return;
    }

#ifdef PADDLE_WITH_CUDA
    auto mode = details::StringToCUDAGraphCaptureMode(capture_mode);
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
    auto *graph_var = ctx.OutputVar("CUDAGraph");
    PADDLE_ENFORCE_NOT_NULL(
        graph_var,
        phi::errors::InvalidArgument("Output(CUDAGraph) must exist when "
                                     "cuda_graph_capture_mode is valid."));
    using GraphVecType = std::vector<std::unique_ptr<CUDAGraphWithInOuts>>;
    auto &inner_graphs = *(graph_var->GetMutable<GraphVecType>());
    inner_graphs.resize(std::max<size_t>(3, inner_graphs.size()));
    size_t graph_idx = is_test ? 0 : 1;
    if (inner_graphs[graph_idx].get() == nullptr) {
      int64_t pool_id;
      if (inner_graphs[1 - graph_idx].get() != nullptr) {
        pool_id = inner_graphs[1 - graph_idx]->PoolID();
      } else {
        pool_id = ctx.Attr<int64_t>("cuda_graph_pool_id");
      }

      framework::PEAndGraphPair pe_and_graph;
      auto callable = [this, is_test, &pe_and_graph](
228
                          const framework::ExecutionContext &exe_ctx) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        pe_and_graph = ComputeImpl(exe_ctx, is_test, true);
      };
      inner_graphs[graph_idx] = CaptureCUDAGraph(
          callable, ctx, {"X"}, {"Out", "DOut"}, mode, pool_id);
      VLOG(10) << "Capture Forward CUDA Graph";
    } else {
      VLOG(10) << "Run Forward CUDA Graph directly";
      ExecuteCUDAGraph(ctx, {"X"}, {"Out", "DOut"},
                       inner_graphs[graph_idx].get());
    }
#else
    PADDLE_THROW(
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
#endif
  }

 private:
  framework::PEAndGraphPair ComputeImpl(const framework::ExecutionContext &ctx,
                                        bool is_test,
                                        bool use_cuda_graph) const {
250
    VLOG(2) << "RunProgramOpKernel Compute";
251
    framework::PEAndGraphPair pe_and_graph;
252 253 254 255
    // Step 1. prepare inputs, outputs, attrs
    auto &input_vars = ctx.MultiInputVar("X");
    auto &param_vars = ctx.MultiInputVar("Params");
    auto output_vars = ctx.MultiOutputVar("Out");
256
    auto dout_vars = ctx.MultiOutputVar("DOut");
257 258 259

    auto input_var_names = ctx.InputNames("X");
    auto output_var_names = ctx.OutputNames("Out");
260
    auto dout_var_names = ctx.OutputNames("DOut");
261

262 263 264 265 266 267
    // current program may not hold parameters
    std::vector<std::string> param_names;
    if (!param_vars.empty()) {
      param_names = ctx.InputNames("Params");
    }

268 269
    auto start_op_index = ctx.Attr<int64_t>("start_op_index");
    auto end_op_index = ctx.Attr<int64_t>("end_op_index");
270
    auto program_id = ctx.Attr<int64_t>("program_id");
271 272 273 274 275 276 277 278 279 280 281

    // NOTE(chenweihang): In order not to add new variable type, use vector
    // here. Originally, here can use scope directly.
    auto *out_scope_vec = ctx.Output<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));

    // Step 2. prepare executor and init persistable variables

282 283 284 285 286 287 288 289 290
    // NOTE(Aurelius84): While training some models, forward can be called many
    // times and then apply backpropagation all at once, such as Reinforcement
    // Learning. Tensor data in multi-step training should be saved into single
    // scope separately. Otherwise, the gradients can be miscalculated because
    // always using the Tensor data of the last step in forward.
    framework::Scope *global_inner_scope = out_scope_vec->front();
    VLOG(2) << "The number of sub scopes before forward: "
            << out_scope_vec->front()->kids().size();
    framework::Scope &scope = global_inner_scope->NewScope();
291

292 293 294 295
    // share input_vars & parameters into scope
    details::ShareVarsIntoScope(input_vars, input_var_names, &scope);
    details::ShareVarsIntoScope(param_vars, param_names, &scope);

296 297
    auto *global_block = ctx.Attr<BlockDesc *>("global_block");

298
    if (end_op_index > start_op_index) {
299
      auto *program = global_block->Program();
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
      bool is_new_created;
      if (use_cuda_graph) {
        pe_and_graph = framework::CreateFixOrderExecutorInfo(
            *program, ctx.GetPlace(), start_op_index, end_op_index, &scope);
        is_new_created = true;
      } else {
        auto cache_info = framework::GetExecutorInfoFromCache(
            *program, ctx.GetPlace(), start_op_index, end_op_index,
            /*is_grad=*/false, program_id, &scope);
        pe_and_graph.first = cache_info.first;
        is_new_created = cache_info.second;
      }

      auto &parallel_executor = pe_and_graph.first;

315
      // all out_vars are skip_eager_var
316
      std::vector<std::string> tmp_vars;
317
      auto &skip_eager_delete_vars =
318 319 320 321 322
          use_cuda_graph
              ? tmp_vars
              : framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
                    program_id, false);
      if (is_new_created) {
323
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_var_names);
324 325 326 327 328 329 330 331
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      output_var_names.begin(),
                                      output_var_names.end());
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      dout_var_names.begin(),
                                      dout_var_names.end());
        framework::details::ParseSafeEagerDeletionSkipVars(
            *program, end_op_index, output_var_names, &skip_eager_delete_vars);
332 333 334 335 336
      }

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
    }
337
    // Step 4. Get Output
338 339 340 341
    details::ShareVarsFromScope(output_vars, output_var_names, *global_block,
                                &scope);
    details::ShareVarsFromScope(dout_vars, dout_var_names, *global_block,
                                &scope);
342 343 344

    // Debug info: scope info when run end
    VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());
345 346 347 348 349 350
    // Step 5. Drop all children scopes while testing.
    if (is_test) {
      out_scope_vec->front()->DropKids();
    }
    VLOG(2) << "The number of sub scopes after forward: "
            << out_scope_vec->front()->kids().size();
351
#ifdef PADDLE_WITH_MKLDNN
352
    if (FLAGS_use_mkldnn) platform::DontClearMKLDNNCache(ctx.GetPlace());
353
#endif
354
    return pe_and_graph;
355 356 357 358 359 360 361
  }
};

template <typename DeviceContext, typename T>
class RunProgramGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    const auto &capture_mode = ctx.Attr<std::string>("cuda_graph_capture_mode");
    if (capture_mode.empty()) {
      ComputeImpl(ctx, false);
      return;
    }

#ifdef PADDLE_WITH_CUDA
    auto mode = details::StringToCUDAGraphCaptureMode(capture_mode);
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
    auto *graph_var =
        const_cast<framework::Variable *>(ctx.InputVar("CUDAGraph"));
    PADDLE_ENFORCE_NOT_NULL(
        graph_var,
        phi::errors::InvalidArgument("Output(CUDAGraph) must exist when "
                                     "cuda_graph_capture_mode is valid."));
    auto &inner_graphs = *(
        graph_var
            ->GetMutable<std::vector<std::unique_ptr<CUDAGraphWithInOuts>>>());
    const size_t graph_idx = 2;
    if (inner_graphs[graph_idx].get() == nullptr) {
      framework::PEAndGraphPair pe_and_graph;
      auto callable =
          [this, &pe_and_graph](const framework::ExecutionContext &exe_ctx) {
            pe_and_graph = ComputeImpl(exe_ctx, true);
          };
      int64_t pool_id = inner_graphs[0].get() != nullptr
                            ? inner_graphs[0]->PoolID()
                            : inner_graphs[1]->PoolID();
      inner_graphs[graph_idx] =
          CaptureCUDAGraph(callable, ctx, {framework::GradVarName("Out")},
                           {framework::GradVarName("X")}, mode, pool_id);
      VLOG(10) << "Capture Backward CUDA Graph";
    } else {
      ExecuteCUDAGraph(ctx, {framework::GradVarName("Out")},
                       {framework::GradVarName("X")},
                       inner_graphs[graph_idx].get());
      VLOG(10) << "Run Backward CUDA Graph directly";
    }
#else
    PADDLE_THROW(
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
#endif
  }

 private:
  framework::PEAndGraphPair ComputeImpl(const framework::ExecutionContext &ctx,
                                        bool use_cuda_graph) const {
413
    VLOG(2) << "RunProgramGradOpKernel Compute";
414
    framework::PEAndGraphPair pe_and_graph;
415 416 417 418 419 420
    // Step 1. prepare inputs and outputs
    auto &output_grad_vars = ctx.MultiInputVar(framework::GradVarName("Out"));
    auto input_grad_vars = ctx.MultiOutputVar(framework::GradVarName("X"));
    auto param_grad_vars = ctx.MultiOutputVar(framework::GradVarName("Params"));

    // if all output vars are set to stop_gradient, grad op no need to executed
421 422 423
    if (input_grad_vars.empty() && param_grad_vars.empty()) {
      return pe_and_graph;
    }
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    auto output_grad_var_names = ctx.InputNames(framework::GradVarName("Out"));
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> input_grad_var_names;
    std::vector<std::string> param_grad_names;
    if (!input_grad_vars.empty()) {
      input_grad_var_names = ctx.OutputNames(framework::GradVarName("X"));
    }
    if (!param_grad_vars.empty()) {
      param_grad_names = ctx.OutputNames(framework::GradVarName("Params"));
    }

    auto *block = ctx.Attr<BlockDesc *>("global_block");
    auto orig_end_op_index = ctx.Attr<int64_t>("end_op_index");
440
    auto program_id = ctx.Attr<int64_t>("program_id");
441
    // NOTE: skip `shape` and `fill_constant` op created by
442 443
    // fluid.backward.gradients, one forward output will generate one `shape`
    // and `fill_constant`
444 445 446 447 448 449 450 451
    int64_t start_op_index = orig_end_op_index + (output_grad_vars.size() * 2);
    int64_t end_op_index = block->OpSize();

    auto *out_scope_vec = ctx.Input<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));
452 453 454 455 456 457 458 459 460 461

    framework::Scope *global_inner_scope = out_scope_vec->front();
    auto sub_scope_num = global_inner_scope->kids().size();
    VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
    PADDLE_ENFORCE_GT(sub_scope_num, 0,
                      platform::errors::InvalidArgument(
                          "The OutScope of RunProgramGradOp should hold at "
                          "least one sub scope."));

    auto &scope = *(global_inner_scope->kids().front());
462
    auto *global_block = ctx.Attr<BlockDesc *>("global_block");
463

464 465
    if (end_op_index > start_op_index) {
      // Step 2. prepare executor and scope
466
      auto *program = global_block->Program();
467 468 469 470 471 472 473 474 475 476 477 478
      bool is_new_created;
      if (use_cuda_graph) {
        pe_and_graph = framework::CreateFixOrderExecutorInfo(
            *program, ctx.GetPlace(), start_op_index, end_op_index, &scope);
        is_new_created = true;
      } else {
        auto cache_info = framework::GetExecutorInfoFromCache(
            *program, ctx.GetPlace(), start_op_index, end_op_index,
            /*is_grad*/ true, program_id, &scope);
        pe_and_graph.first = cache_info.first;
        is_new_created = cache_info.second;
      }
479

480 481
      auto &parallel_executor = pe_and_graph.first;
      std::vector<std::string> tmp_vars;
482
      auto &skip_eager_delete_vars =
483 484 485 486 487
          use_cuda_graph
              ? tmp_vars
              : framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
                    program_id, true);
      if (is_new_created) {
488 489 490 491 492 493 494 495 496
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0,
                                           output_grad_var_names);

        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      input_grad_var_names.begin(),
                                      input_grad_var_names.end());
        framework::details::AppendSkipDeletionVars(param_grad_names,
                                                   &skip_eager_delete_vars);
      }
497 498 499 500 501 502 503 504 505 506

      details::ShareVarsIntoScope(output_grad_vars, output_grad_var_names,
                                  &scope);
      // Debug info: scope info when run end
      VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(
          /*skip_eager_delete_vars=*/skip_eager_delete_vars);
    }
507

508
    // Step 4. get outputs
509 510 511 512
    details::ShareVarsFromScope(input_grad_vars, input_grad_var_names,
                                *global_block, &scope);
    details::ShareVarsFromScope(param_grad_vars, param_grad_names,
                                *global_block, &scope);
513 514 515 516 517

    // Step5. drop current scope
    global_inner_scope->DeleteScope(&scope);
    VLOG(2) << "The number of sub scopes after backward: "
            << global_inner_scope->kids().size();
518
    return pe_and_graph;
519 520 521 522 523
  }
};

}  // namespace operators
}  // namespace paddle