run_program_op.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/variable.h"

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using BlockDesc = framework::BlockDesc;

using Variable = framework::Variable;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;

namespace details {

// all input vars should be LoDTensor & is initialized
static void CheckInputVarStatus(const Variable &var,
                                const std::string &var_name) {
  PADDLE_ENFORCE_EQ(
      var.IsType<LoDTensor>(), true,
      platform::errors::InvalidArgument(
          "The input variable %s of "
          "RunProgram(Grad)Op(StaticModelRunner) holds "
          "wrong type. Expect type is LoDTensor, but receive type is %s.",
          var_name, platform::demangle(framework::ToTypeName(var.Type()))));
  PADDLE_ENFORCE_EQ(
      var.Get<LoDTensor>().IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor in input variable %s of "
                                        "RunProgram(Grad)Op(StaticModelRunner) "
                                        "is not initialized.",
                                        var_name));
}

static void CheckOutputVarStatus(const Variable &src_var,
                                 const Variable &dst_var,
                                 const std::string &var_name) {
  if (dst_var.IsType<LoDTensor>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
            "RunProgram(Grad)Op(StaticModelRunner)'s internal scope holds "
            "wrong type. Expect type is LoDTensor, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<LoDTensor>().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
                          "RunProgram(Grad)Op(StaticModelRunner)'s internal "
                          "scope is not initialized.",
                          var_name));
  } else if (dst_var.IsType<SelectedRows>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<SelectedRows>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
            "RunProgram(Grad)Op(StaticModelRunner)'s internal scope holds "
            "wrong type. Expect type is SelectedRows, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<SelectedRows>().value().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
                          "RunProgram(Grad)Op(StaticModelRunner)'s "
                          "internal scope is not initialized.",
                          var_name));

  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op(StaticModelRunner) only support output "
        "variable of type LoDTensor or SelectedRows, "
        "but received variable %s's type is %s",
        var_name, platform::demangle(framework::ToTypeName(dst_var.Type()))));
  }
}

static void VariableShare(const Variable &src_var, Variable *dst_var) {
  // The previous check ensures that the variable type can only be LoDTensor or
106
  // SelectedRows.
107 108
  if (src_var.IsType<LoDTensor>()) {
    auto *lod_tensor = dst_var->GetMutable<LoDTensor>();
109
    lod_tensor->ShareDataWith(src_var.Get<LoDTensor>());
110 111 112
    lod_tensor->set_lod(src_var.Get<LoDTensor>().lod());
  } else if (src_var.IsType<SelectedRows>()) {
    auto *selected_rows = dst_var->GetMutable<SelectedRows>();
113 114
    selected_rows->mutable_value()->ShareDataWith(
        src_var.Get<SelectedRows>().value());
115 116 117 118 119
    selected_rows->set_rows(src_var.Get<SelectedRows>().rows());
    selected_rows->set_height(src_var.Get<SelectedRows>().height());
  }
}

120
static void ShareVarsIntoScope(const std::vector<Variable *> &vars,
121 122 123
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
  for (size_t i = 0; i < vars.size(); ++i) {
124 125 126
    auto *var = scope->Var(var_names[i]);
    CheckInputVarStatus(*vars[i], var_names[i]);
    VariableShare(*vars[i], var);
127 128 129
  }
}

130 131 132
static void ShareVarsFromScope(const std::vector<Variable *> &vars,
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
133 134 135 136 137 138 139 140
  for (size_t i = 0; i < vars.size(); ++i) {
    if (var_names[i] == framework::kEmptyVarName) {
      VLOG(2) << "find variable name is " << framework::kEmptyVarName
              << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
141
    auto *var = scope->FindVar(var_names[i]);
142 143 144 145 146 147
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("The output variable %s is not in "
                                        "RunProgram(Grad)Op(StaticModelRunner)'"
                                        "s internal scope.",
                                        var_names[i]));
    CheckOutputVarStatus(*var, *vars[i], var_names[i]);
148
    VariableShare(*var, vars[i]);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  }
}

static void AppendSkipDeletionVars(
    std::vector<std::string> *all_vars,
    const std::vector<std::string> &append_vars) {
  for (auto &var : append_vars) {
    all_vars->emplace_back(var);
  }
}

}  // namespace details

template <typename DeviceContext, typename T>
class RunProgramOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    VLOG(2) << "RunProgramOpKernel Compute";
    // Step 1. prepare inputs, outputs, attrs
    auto &input_vars = ctx.MultiInputVar("X");
    auto &param_vars = ctx.MultiInputVar("Params");
    auto output_vars = ctx.MultiOutputVar("Out");

    auto input_var_names = ctx.InputNames("X");
    auto param_names = ctx.InputNames("Params");
    auto output_var_names = ctx.OutputNames("Out");

    auto *block = ctx.Attr<BlockDesc *>("global_block");
    auto *program = block->Program();
    auto start_op_index = ctx.Attr<int64_t>("start_op_index");
    auto end_op_index = ctx.Attr<int64_t>("end_op_index");
    auto is_test = ctx.Attr<bool>("is_test");

    // NOTE(chenweihang): In order not to add new variable type, use vector
    // here. Originally, here can use scope directly.
    auto *out_scope_vec = ctx.Output<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));

    // Step 2. prepare executor and init persistable variables
    framework::Executor exe(ctx.GetPlace());

    // skip delete vars
    std::vector<std::string> skip_vars;
    details::AppendSkipDeletionVars(&skip_vars, output_var_names);
    VLOG(2) << "Prepare to skip " << skip_vars.size()
            << " var(s): " << string::join_strings(skip_vars, ' ');

    auto exe_ctx = exe.Prepare(*program, 0, skip_vars);

201
    // get scope and clear old vars
202
    framework::Scope &scope = *(out_scope_vec->front());
203 204 205
    auto local_vars = scope.LocalVarNames();
    scope.EraseVars(local_vars);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    // share input_vars & parameters into scope
    details::ShareVarsIntoScope(input_vars, input_var_names, &scope);
    details::ShareVarsIntoScope(param_vars, param_names, &scope);

    // Step 3. run ops
    exe.RunPartialPreparedContext(exe_ctx.get(), &scope, start_op_index,
                                  end_op_index, /*create_local_scope=*/false,
                                  /*create_vars=*/true, /*keep_kids=*/!is_test);

    // Step 4. Get Output
    details::ShareVarsFromScope(output_vars, output_var_names, &scope);

    // Debug info: scope info when run end
    VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());
  }
};

template <typename DeviceContext, typename T>
class RunProgramGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    VLOG(2) << "RunProgramGradOpKernel Compute";
    // Step 1. prepare inputs and outputs
    auto &output_grad_vars = ctx.MultiInputVar(framework::GradVarName("Out"));
    auto input_grad_vars = ctx.MultiOutputVar(framework::GradVarName("X"));
    auto param_grad_vars = ctx.MultiOutputVar(framework::GradVarName("Params"));

    // if all output vars are set to stop_gradient, grad op no need to executed
    if (input_grad_vars.empty() && param_grad_vars.empty()) return;

    auto output_grad_var_names = ctx.InputNames(framework::GradVarName("Out"));
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> input_grad_var_names;
    std::vector<std::string> param_grad_names;
    if (!input_grad_vars.empty()) {
      input_grad_var_names = ctx.OutputNames(framework::GradVarName("X"));
    }
    if (!param_grad_vars.empty()) {
      param_grad_names = ctx.OutputNames(framework::GradVarName("Params"));
    }

    auto *block = ctx.Attr<BlockDesc *>("global_block");
    auto *program = block->Program();

    auto orig_end_op_index = ctx.Attr<int64_t>("end_op_index");
    // NOTE: skip `shape` and `fill_constant` op created by
    // fluid.backward.gradients,
    // one forward output will generate one `shape` and `fill_constant`
    int64_t start_op_index = orig_end_op_index + (output_grad_vars.size() * 2);
    int64_t end_op_index = block->OpSize();

    auto *out_scope_vec = ctx.Input<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));

    // Step 2. prepare executor and scope
    framework::Executor exe(ctx.GetPlace());

    // skip delete vars
    std::vector<std::string> skip_vars;
    details::AppendSkipDeletionVars(&skip_vars, input_grad_var_names);
    details::AppendSkipDeletionVars(&skip_vars, param_grad_names);
    VLOG(2) << "Prepare to skip " << skip_vars.size()
            << " var(s): " << string::join_strings(skip_vars, ' ');

    auto exe_ctx = exe.Prepare(*program, 0, skip_vars);

    auto &scope = *(out_scope_vec->front());
    details::ShareVarsIntoScope(output_grad_vars, output_grad_var_names,
                                &scope);

    // Debug info: scope info when run end
    VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());

    // Step 3. run ops
    exe.RunPartialPreparedContext(exe_ctx.get(), &scope, start_op_index,
                                  end_op_index, /*create_local_scope=*/false,
                                  /*create_vars=*/true, /*keep_kids=*/false);

289 290 291
    // Step 4. get outputs
    details::ShareVarsFromScope(input_grad_vars, input_grad_var_names, &scope);
    details::ShareVarsFromScope(param_grad_vars, param_grad_names, &scope);
292 293 294 295 296
  }
};

}  // namespace operators
}  // namespace paddle