run_program_op.h 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
21
#include <unordered_map>
22
#include <unordered_set>
23 24 25
#include <utility>
#include <vector>

26
#include "paddle/fluid/framework/executor_cache.h"
27
#include "paddle/fluid/framework/op_desc.h"
28 29 30 31 32 33
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/variable.h"
34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
37 38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/operators/cuda_graph_with_in_out.h"
#endif
40 41

DECLARE_bool(use_mkldnn);
42 43 44 45 46 47

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using BlockDesc = framework::BlockDesc;
48
using ProgramDesc = framework::ProgramDesc;
49 50 51

using Variable = framework::Variable;
using LoDTensor = framework::LoDTensor;
52
using SelectedRows = phi::SelectedRows;
53 54 55 56 57 58 59 60 61 62

namespace details {

// all input vars should be LoDTensor & is initialized
static void CheckInputVarStatus(const Variable &var,
                                const std::string &var_name) {
  PADDLE_ENFORCE_EQ(
      var.IsType<LoDTensor>(), true,
      platform::errors::InvalidArgument(
          "The input variable %s of "
63
          "RunProgram(Grad)Op holds "
64 65 66 67 68
          "wrong type. Expect type is LoDTensor, but receive type is %s.",
          var_name, platform::demangle(framework::ToTypeName(var.Type()))));
  PADDLE_ENFORCE_EQ(
      var.Get<LoDTensor>().IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor in input variable %s of "
69
                                        "RunProgram(Grad)Op "
70 71 72 73 74 75 76 77 78 79 80 81
                                        "is not initialized.",
                                        var_name));
}

static void CheckOutputVarStatus(const Variable &src_var,
                                 const Variable &dst_var,
                                 const std::string &var_name) {
  if (dst_var.IsType<LoDTensor>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
82
            "RunProgram(Grad)Op's internal scope holds "
83 84 85 86 87 88
            "wrong type. Expect type is LoDTensor, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<LoDTensor>().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
89
                          "RunProgram(Grad)Op's internal "
90 91
                          "scope is not initialized.",
                          var_name));
92
  } else if (dst_var.IsType<phi::SelectedRows>()) {
93
    PADDLE_ENFORCE_EQ(
94
        src_var.IsType<phi::SelectedRows>(), true,
95 96
        platform::errors::InvalidArgument(
            "The output variable %s get from "
97
            "RunProgram(Grad)Op's internal scope holds "
98 99 100
            "wrong type. Expect type is SelectedRows, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
101
    PADDLE_ENFORCE_EQ(src_var.Get<phi::SelectedRows>().value().IsInitialized(),
102 103 104 105 106
                      true, platform::errors::InvalidArgument(
                                "The tensor in output variable %s get from "
                                "RunProgram(Grad)Op's "
                                "internal scope is not initialized.",
                                var_name));
107 108 109

  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
110
        "The RunProgram(Grad)Op only support output "
111 112 113 114 115 116 117 118
        "variable of type LoDTensor or SelectedRows, "
        "but received variable %s's type is %s",
        var_name, platform::demangle(framework::ToTypeName(dst_var.Type()))));
  }
}

static void VariableShare(const Variable &src_var, Variable *dst_var) {
  // The previous check ensures that the variable type can only be LoDTensor or
119
  // SelectedRows.
120 121
  if (src_var.IsType<LoDTensor>()) {
    auto *lod_tensor = dst_var->GetMutable<LoDTensor>();
122
    lod_tensor->ShareDataWith(src_var.Get<LoDTensor>());
123
    lod_tensor->set_lod(src_var.Get<LoDTensor>().lod());
124 125
  } else if (src_var.IsType<phi::SelectedRows>()) {
    auto *selected_rows = dst_var->GetMutable<phi::SelectedRows>();
126
    selected_rows->mutable_value()->ShareDataWith(
127 128 129
        src_var.Get<phi::SelectedRows>().value());
    selected_rows->set_rows(src_var.Get<phi::SelectedRows>().rows());
    selected_rows->set_height(src_var.Get<phi::SelectedRows>().height());
130 131 132
  }
}

133
static void ShareVarsIntoScope(const std::vector<Variable *> &vars,
134 135 136
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
  for (size_t i = 0; i < vars.size(); ++i) {
137 138 139
    if (var_names[i] == "Fake_var") {
      continue;
    }
140 141 142
    auto *var = scope->Var(var_names[i]);
    CheckInputVarStatus(*vars[i], var_names[i]);
    VariableShare(*vars[i], var);
143 144 145
  }
}

146 147
static void ShareVarsFromScope(const std::vector<Variable *> &vars,
                               const std::vector<std::string> &var_names,
148
                               const BlockDesc &global_block,
149
                               framework::Scope *scope) {
150
  for (size_t i = 0; i < vars.size(); ++i) {
151 152 153 154
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't findthem in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
155
    if (var_names[i] == framework::kEmptyVarName ||
156
        var_names[i] == "Fake_var" || !global_block.HasVar(var_names[i])) {
157
      VLOG(2) << "find variable name is " << var_names[i] << ", skip it!";
158 159 160 161
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
162
    auto *var = scope->FindVar(var_names[i]);
163 164
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("The output variable %s is not in "
165
                                        "RunProgram(Grad)Op'"
166 167 168
                                        "s internal scope.",
                                        var_names[i]));
    CheckOutputVarStatus(*var, *vars[i], var_names[i]);
169
    VariableShare(*var, vars[i]);
170 171 172
  }
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#ifdef PADDLE_WITH_CUDA
static cudaStreamCaptureMode StringToCUDAGraphCaptureMode(
    const std::string &mode) {
  if (mode == "global") {
    return cudaStreamCaptureModeGlobal;
  } else if (mode == "thread_local") {
    return cudaStreamCaptureModeThreadLocal;
  } else if (mode == "relaxed") {
    return cudaStreamCaptureModeRelaxed;
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "Unsupported CUDA Graph capture mode %s", mode));
  }
}
#endif

189 190 191 192 193 194
}  // namespace details

template <typename DeviceContext, typename T>
class RunProgramOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    const auto &capture_mode = ctx.Attr<std::string>("cuda_graph_capture_mode");
    auto is_test = ctx.Attr<bool>("is_test");
    if (capture_mode.empty()) {
      ComputeImpl(ctx, is_test, false);
      return;
    }

#ifdef PADDLE_WITH_CUDA
    auto mode = details::StringToCUDAGraphCaptureMode(capture_mode);
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
    auto *graph_var = ctx.OutputVar("CUDAGraph");
    PADDLE_ENFORCE_NOT_NULL(
        graph_var,
        phi::errors::InvalidArgument("Output(CUDAGraph) must exist when "
                                     "cuda_graph_capture_mode is valid."));
    using GraphVecType = std::vector<std::unique_ptr<CUDAGraphWithInOuts>>;
    auto &inner_graphs = *(graph_var->GetMutable<GraphVecType>());
    inner_graphs.resize(std::max<size_t>(3, inner_graphs.size()));
    size_t graph_idx = is_test ? 0 : 1;
    if (inner_graphs[graph_idx].get() == nullptr) {
      int64_t pool_id;
      if (inner_graphs[1 - graph_idx].get() != nullptr) {
        pool_id = inner_graphs[1 - graph_idx]->PoolID();
      } else {
        pool_id = ctx.Attr<int64_t>("cuda_graph_pool_id");
      }

      framework::PEAndGraphPair pe_and_graph;
      auto callable = [this, is_test, &pe_and_graph](
          const framework::ExecutionContext &exe_ctx) {
        pe_and_graph = ComputeImpl(exe_ctx, is_test, true);
      };
      inner_graphs[graph_idx] = CaptureCUDAGraph(
          callable, ctx, {"X"}, {"Out", "DOut"}, mode, pool_id);
      VLOG(10) << "Capture Forward CUDA Graph";
    } else {
      VLOG(10) << "Run Forward CUDA Graph directly";
      ExecuteCUDAGraph(ctx, {"X"}, {"Out", "DOut"},
                       inner_graphs[graph_idx].get());
    }
#else
    PADDLE_THROW(
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
#endif
  }

 private:
  framework::PEAndGraphPair ComputeImpl(const framework::ExecutionContext &ctx,
                                        bool is_test,
                                        bool use_cuda_graph) const {
249
    VLOG(2) << "RunProgramOpKernel Compute";
250
    framework::PEAndGraphPair pe_and_graph;
251 252 253 254
    // Step 1. prepare inputs, outputs, attrs
    auto &input_vars = ctx.MultiInputVar("X");
    auto &param_vars = ctx.MultiInputVar("Params");
    auto output_vars = ctx.MultiOutputVar("Out");
255
    auto dout_vars = ctx.MultiOutputVar("DOut");
256 257 258

    auto input_var_names = ctx.InputNames("X");
    auto output_var_names = ctx.OutputNames("Out");
259
    auto dout_var_names = ctx.OutputNames("DOut");
260

261 262 263 264 265 266
    // current program may not hold parameters
    std::vector<std::string> param_names;
    if (!param_vars.empty()) {
      param_names = ctx.InputNames("Params");
    }

267 268
    auto start_op_index = ctx.Attr<int64_t>("start_op_index");
    auto end_op_index = ctx.Attr<int64_t>("end_op_index");
269
    auto program_id = ctx.Attr<int64_t>("program_id");
270 271 272 273 274 275 276 277 278 279 280

    // NOTE(chenweihang): In order not to add new variable type, use vector
    // here. Originally, here can use scope directly.
    auto *out_scope_vec = ctx.Output<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));

    // Step 2. prepare executor and init persistable variables

281 282 283 284 285 286 287 288 289
    // NOTE(Aurelius84): While training some models, forward can be called many
    // times and then apply backpropagation all at once, such as Reinforcement
    // Learning. Tensor data in multi-step training should be saved into single
    // scope separately. Otherwise, the gradients can be miscalculated because
    // always using the Tensor data of the last step in forward.
    framework::Scope *global_inner_scope = out_scope_vec->front();
    VLOG(2) << "The number of sub scopes before forward: "
            << out_scope_vec->front()->kids().size();
    framework::Scope &scope = global_inner_scope->NewScope();
290

291 292 293 294
    // share input_vars & parameters into scope
    details::ShareVarsIntoScope(input_vars, input_var_names, &scope);
    details::ShareVarsIntoScope(param_vars, param_names, &scope);

295 296
    auto *global_block = ctx.Attr<BlockDesc *>("global_block");

297
    if (end_op_index > start_op_index) {
298
      auto *program = global_block->Program();
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
      bool is_new_created;
      if (use_cuda_graph) {
        pe_and_graph = framework::CreateFixOrderExecutorInfo(
            *program, ctx.GetPlace(), start_op_index, end_op_index, &scope);
        is_new_created = true;
      } else {
        auto cache_info = framework::GetExecutorInfoFromCache(
            *program, ctx.GetPlace(), start_op_index, end_op_index,
            /*is_grad=*/false, program_id, &scope);
        pe_and_graph.first = cache_info.first;
        is_new_created = cache_info.second;
      }

      auto &parallel_executor = pe_and_graph.first;

314
      // all out_vars are skip_eager_var
315
      std::vector<std::string> tmp_vars;
316
      auto &skip_eager_delete_vars =
317 318 319 320 321
          use_cuda_graph
              ? tmp_vars
              : framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
                    program_id, false);
      if (is_new_created) {
322
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_var_names);
323 324 325 326 327 328 329 330
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      output_var_names.begin(),
                                      output_var_names.end());
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      dout_var_names.begin(),
                                      dout_var_names.end());
        framework::details::ParseSafeEagerDeletionSkipVars(
            *program, end_op_index, output_var_names, &skip_eager_delete_vars);
331 332 333 334 335
      }

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
    }
336
    // Step 4. Get Output
337 338 339 340
    details::ShareVarsFromScope(output_vars, output_var_names, *global_block,
                                &scope);
    details::ShareVarsFromScope(dout_vars, dout_var_names, *global_block,
                                &scope);
341 342 343

    // Debug info: scope info when run end
    VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());
344 345 346 347 348 349
    // Step 5. Drop all children scopes while testing.
    if (is_test) {
      out_scope_vec->front()->DropKids();
    }
    VLOG(2) << "The number of sub scopes after forward: "
            << out_scope_vec->front()->kids().size();
350
#ifdef PADDLE_WITH_MKLDNN
351
    if (FLAGS_use_mkldnn) platform::DontClearMKLDNNCache(ctx.GetPlace());
352
#endif
353
    return pe_and_graph;
354 355 356 357 358 359 360
  }
};

template <typename DeviceContext, typename T>
class RunProgramGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    const auto &capture_mode = ctx.Attr<std::string>("cuda_graph_capture_mode");
    if (capture_mode.empty()) {
      ComputeImpl(ctx, false);
      return;
    }

#ifdef PADDLE_WITH_CUDA
    auto mode = details::StringToCUDAGraphCaptureMode(capture_mode);
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
    auto *graph_var =
        const_cast<framework::Variable *>(ctx.InputVar("CUDAGraph"));
    PADDLE_ENFORCE_NOT_NULL(
        graph_var,
        phi::errors::InvalidArgument("Output(CUDAGraph) must exist when "
                                     "cuda_graph_capture_mode is valid."));
    auto &inner_graphs = *(
        graph_var
            ->GetMutable<std::vector<std::unique_ptr<CUDAGraphWithInOuts>>>());
    const size_t graph_idx = 2;
    if (inner_graphs[graph_idx].get() == nullptr) {
      framework::PEAndGraphPair pe_and_graph;
      auto callable =
          [this, &pe_and_graph](const framework::ExecutionContext &exe_ctx) {
            pe_and_graph = ComputeImpl(exe_ctx, true);
          };
      int64_t pool_id = inner_graphs[0].get() != nullptr
                            ? inner_graphs[0]->PoolID()
                            : inner_graphs[1]->PoolID();
      inner_graphs[graph_idx] =
          CaptureCUDAGraph(callable, ctx, {framework::GradVarName("Out")},
                           {framework::GradVarName("X")}, mode, pool_id);
      VLOG(10) << "Capture Backward CUDA Graph";
    } else {
      ExecuteCUDAGraph(ctx, {framework::GradVarName("Out")},
                       {framework::GradVarName("X")},
                       inner_graphs[graph_idx].get());
      VLOG(10) << "Run Backward CUDA Graph directly";
    }
#else
    PADDLE_THROW(
        phi::errors::InvalidArgument("The cuda_graph_capture_mode is only "
                                     "valid when using NVIDIA GPU."));
#endif
  }

 private:
  framework::PEAndGraphPair ComputeImpl(const framework::ExecutionContext &ctx,
                                        bool use_cuda_graph) const {
412
    VLOG(2) << "RunProgramGradOpKernel Compute";
413
    framework::PEAndGraphPair pe_and_graph;
414 415 416 417 418 419
    // Step 1. prepare inputs and outputs
    auto &output_grad_vars = ctx.MultiInputVar(framework::GradVarName("Out"));
    auto input_grad_vars = ctx.MultiOutputVar(framework::GradVarName("X"));
    auto param_grad_vars = ctx.MultiOutputVar(framework::GradVarName("Params"));

    // if all output vars are set to stop_gradient, grad op no need to executed
420 421 422
    if (input_grad_vars.empty() && param_grad_vars.empty()) {
      return pe_and_graph;
    }
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    auto output_grad_var_names = ctx.InputNames(framework::GradVarName("Out"));
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> input_grad_var_names;
    std::vector<std::string> param_grad_names;
    if (!input_grad_vars.empty()) {
      input_grad_var_names = ctx.OutputNames(framework::GradVarName("X"));
    }
    if (!param_grad_vars.empty()) {
      param_grad_names = ctx.OutputNames(framework::GradVarName("Params"));
    }

    auto *block = ctx.Attr<BlockDesc *>("global_block");
    auto orig_end_op_index = ctx.Attr<int64_t>("end_op_index");
439
    auto program_id = ctx.Attr<int64_t>("program_id");
440
    // NOTE: skip `shape` and `fill_constant` op created by
441 442
    // fluid.backward.gradients, one forward output will generate one `shape`
    // and `fill_constant`
443 444 445 446 447 448 449 450
    int64_t start_op_index = orig_end_op_index + (output_grad_vars.size() * 2);
    int64_t end_op_index = block->OpSize();

    auto *out_scope_vec = ctx.Input<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));
451 452 453 454 455 456 457 458 459 460

    framework::Scope *global_inner_scope = out_scope_vec->front();
    auto sub_scope_num = global_inner_scope->kids().size();
    VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
    PADDLE_ENFORCE_GT(sub_scope_num, 0,
                      platform::errors::InvalidArgument(
                          "The OutScope of RunProgramGradOp should hold at "
                          "least one sub scope."));

    auto &scope = *(global_inner_scope->kids().front());
461
    auto *global_block = ctx.Attr<BlockDesc *>("global_block");
462

463 464
    if (end_op_index > start_op_index) {
      // Step 2. prepare executor and scope
465
      auto *program = global_block->Program();
466 467 468 469 470 471 472 473 474 475 476 477
      bool is_new_created;
      if (use_cuda_graph) {
        pe_and_graph = framework::CreateFixOrderExecutorInfo(
            *program, ctx.GetPlace(), start_op_index, end_op_index, &scope);
        is_new_created = true;
      } else {
        auto cache_info = framework::GetExecutorInfoFromCache(
            *program, ctx.GetPlace(), start_op_index, end_op_index,
            /*is_grad*/ true, program_id, &scope);
        pe_and_graph.first = cache_info.first;
        is_new_created = cache_info.second;
      }
478

479 480
      auto &parallel_executor = pe_and_graph.first;
      std::vector<std::string> tmp_vars;
481
      auto &skip_eager_delete_vars =
482 483 484 485 486
          use_cuda_graph
              ? tmp_vars
              : framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
                    program_id, true);
      if (is_new_created) {
487 488 489 490 491 492 493 494 495
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0,
                                           output_grad_var_names);

        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      input_grad_var_names.begin(),
                                      input_grad_var_names.end());
        framework::details::AppendSkipDeletionVars(param_grad_names,
                                                   &skip_eager_delete_vars);
      }
496 497 498 499 500 501 502 503 504 505

      details::ShareVarsIntoScope(output_grad_vars, output_grad_var_names,
                                  &scope);
      // Debug info: scope info when run end
      VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(
          /*skip_eager_delete_vars=*/skip_eager_delete_vars);
    }
506

507
    // Step 4. get outputs
508 509 510 511
    details::ShareVarsFromScope(input_grad_vars, input_grad_var_names,
                                *global_block, &scope);
    details::ShareVarsFromScope(param_grad_vars, param_grad_names,
                                *global_block, &scope);
512 513 514 515 516

    // Step5. drop current scope
    global_inner_scope->DeleteScope(&scope);
    VLOG(2) << "The number of sub scopes after backward: "
            << global_inner_scope->kids().size();
517
    return pe_and_graph;
518 519 520 521 522
  }
};

}  // namespace operators
}  // namespace paddle