run_program_op.h 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <iterator>
19
#include <memory>
20
#include <string>
21
#include <unordered_map>
22
#include <unordered_set>
23 24 25
#include <utility>
#include <vector>

26
#include "paddle/fluid/framework/executor_cache.h"
27
#include "paddle/fluid/framework/op_desc.h"
28 29 30 31 32 33
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/variable.h"
34 35 36 37 38
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
39 40 41 42 43 44

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using BlockDesc = framework::BlockDesc;
45
using ProgramDesc = framework::ProgramDesc;
46 47 48 49 50 51 52 53 54 55 56 57 58 59

using Variable = framework::Variable;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;

namespace details {

// all input vars should be LoDTensor & is initialized
static void CheckInputVarStatus(const Variable &var,
                                const std::string &var_name) {
  PADDLE_ENFORCE_EQ(
      var.IsType<LoDTensor>(), true,
      platform::errors::InvalidArgument(
          "The input variable %s of "
60
          "RunProgram(Grad)Op holds "
61 62 63 64 65
          "wrong type. Expect type is LoDTensor, but receive type is %s.",
          var_name, platform::demangle(framework::ToTypeName(var.Type()))));
  PADDLE_ENFORCE_EQ(
      var.Get<LoDTensor>().IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor in input variable %s of "
66
                                        "RunProgram(Grad)Op "
67 68 69 70 71 72 73 74 75 76 77 78
                                        "is not initialized.",
                                        var_name));
}

static void CheckOutputVarStatus(const Variable &src_var,
                                 const Variable &dst_var,
                                 const std::string &var_name) {
  if (dst_var.IsType<LoDTensor>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
79
            "RunProgram(Grad)Op's internal scope holds "
80 81 82 83 84 85
            "wrong type. Expect type is LoDTensor, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<LoDTensor>().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
86
                          "RunProgram(Grad)Op's internal "
87 88 89 90 91 92 93
                          "scope is not initialized.",
                          var_name));
  } else if (dst_var.IsType<SelectedRows>()) {
    PADDLE_ENFORCE_EQ(
        src_var.IsType<SelectedRows>(), true,
        platform::errors::InvalidArgument(
            "The output variable %s get from "
94
            "RunProgram(Grad)Op's internal scope holds "
95 96 97 98 99 100
            "wrong type. Expect type is SelectedRows, but receive type is %s.",
            var_name,
            platform::demangle(framework::ToTypeName(src_var.Type()))));
    PADDLE_ENFORCE_EQ(src_var.Get<SelectedRows>().value().IsInitialized(), true,
                      platform::errors::InvalidArgument(
                          "The tensor in output variable %s get from "
101
                          "RunProgram(Grad)Op's "
102 103 104 105 106
                          "internal scope is not initialized.",
                          var_name));

  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
107
        "The RunProgram(Grad)Op only support output "
108 109 110 111 112 113 114 115
        "variable of type LoDTensor or SelectedRows, "
        "but received variable %s's type is %s",
        var_name, platform::demangle(framework::ToTypeName(dst_var.Type()))));
  }
}

static void VariableShare(const Variable &src_var, Variable *dst_var) {
  // The previous check ensures that the variable type can only be LoDTensor or
116
  // SelectedRows.
117 118
  if (src_var.IsType<LoDTensor>()) {
    auto *lod_tensor = dst_var->GetMutable<LoDTensor>();
119
    lod_tensor->ShareDataWith(src_var.Get<LoDTensor>());
120 121 122
    lod_tensor->set_lod(src_var.Get<LoDTensor>().lod());
  } else if (src_var.IsType<SelectedRows>()) {
    auto *selected_rows = dst_var->GetMutable<SelectedRows>();
123 124
    selected_rows->mutable_value()->ShareDataWith(
        src_var.Get<SelectedRows>().value());
125 126 127 128 129
    selected_rows->set_rows(src_var.Get<SelectedRows>().rows());
    selected_rows->set_height(src_var.Get<SelectedRows>().height());
  }
}

130
static void ShareVarsIntoScope(const std::vector<Variable *> &vars,
131 132 133
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
  for (size_t i = 0; i < vars.size(); ++i) {
134 135 136
    if (var_names[i] == "Fake_var") {
      continue;
    }
137 138 139
    auto *var = scope->Var(var_names[i]);
    CheckInputVarStatus(*vars[i], var_names[i]);
    VariableShare(*vars[i], var);
140 141 142
  }
}

143 144 145
static void ShareVarsFromScope(const std::vector<Variable *> &vars,
                               const std::vector<std::string> &var_names,
                               framework::Scope *scope) {
146
  for (size_t i = 0; i < vars.size(); ++i) {
147 148 149
    if (var_names[i] == framework::kEmptyVarName ||
        var_names[i] == "Fake_var") {
      VLOG(2) << "find variable name is " << var_names[i] << ", skip it!";
150 151 152 153
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
154
    auto *var = scope->FindVar(var_names[i]);
155 156
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::NotFound("The output variable %s is not in "
157
                                        "RunProgram(Grad)Op'"
158 159 160
                                        "s internal scope.",
                                        var_names[i]));
    CheckOutputVarStatus(*var, *vars[i], var_names[i]);
161
    VariableShare(*var, vars[i]);
162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }
}

}  // namespace details

template <typename DeviceContext, typename T>
class RunProgramOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    VLOG(2) << "RunProgramOpKernel Compute";
    // Step 1. prepare inputs, outputs, attrs
    auto &input_vars = ctx.MultiInputVar("X");
    auto &param_vars = ctx.MultiInputVar("Params");
    auto output_vars = ctx.MultiOutputVar("Out");
176
    auto dout_vars = ctx.MultiOutputVar("DOut");
177 178 179

    auto input_var_names = ctx.InputNames("X");
    auto output_var_names = ctx.OutputNames("Out");
180
    auto dout_var_names = ctx.OutputNames("DOut");
181

182 183 184 185 186 187
    // current program may not hold parameters
    std::vector<std::string> param_names;
    if (!param_vars.empty()) {
      param_names = ctx.InputNames("Params");
    }

188 189 190 191 192 193 194 195 196 197 198 199 200 201
    auto start_op_index = ctx.Attr<int64_t>("start_op_index");
    auto end_op_index = ctx.Attr<int64_t>("end_op_index");
    auto is_test = ctx.Attr<bool>("is_test");

    // NOTE(chenweihang): In order not to add new variable type, use vector
    // here. Originally, here can use scope directly.
    auto *out_scope_vec = ctx.Output<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));

    // Step 2. prepare executor and init persistable variables

202 203 204 205 206 207 208 209 210
    // NOTE(Aurelius84): While training some models, forward can be called many
    // times and then apply backpropagation all at once, such as Reinforcement
    // Learning. Tensor data in multi-step training should be saved into single
    // scope separately. Otherwise, the gradients can be miscalculated because
    // always using the Tensor data of the last step in forward.
    framework::Scope *global_inner_scope = out_scope_vec->front();
    VLOG(2) << "The number of sub scopes before forward: "
            << out_scope_vec->front()->kids().size();
    framework::Scope &scope = global_inner_scope->NewScope();
211

212 213 214 215
    // share input_vars & parameters into scope
    details::ShareVarsIntoScope(input_vars, input_var_names, &scope);
    details::ShareVarsIntoScope(param_vars, param_names, &scope);

216 217
    if (end_op_index > start_op_index) {
      auto *program = ctx.Attr<BlockDesc *>("global_block")->Program();
218 219 220 221
      auto cache_key = framework::ExecutorInfoCache::CacheKey(
          program, ctx.GetPlace(), start_op_index, end_op_index,
          /*is_grad=*/false);
      auto cache_info = framework::GetExecutorInfoFromCache(cache_key, &scope);
222 223 224 225 226 227
      auto &parallel_executor = cache_info.first;
      if (cache_info.second /*is_new_created*/) {
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_var_names);
      }

      // Step 3. run ops
228 229 230 231 232 233 234
      // all out_vars are skip_eager_var
      std::vector<std::string> skip_eager_delete_vars(output_var_names);
      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                    dout_var_names.begin(),
                                    dout_var_names.end());
      framework::details::ParseSafeEagerDeletionSkipVars(
          *program, end_op_index, output_var_names, &skip_eager_delete_vars);
235 236
      parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
    }
237 238
    // Step 4. Get Output
    details::ShareVarsFromScope(output_vars, output_var_names, &scope);
239
    details::ShareVarsFromScope(dout_vars, dout_var_names, &scope);
240 241 242

    // Debug info: scope info when run end
    VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());
243 244 245 246 247 248
    // Step 5. Drop all children scopes while testing.
    if (is_test) {
      out_scope_vec->front()->DropKids();
    }
    VLOG(2) << "The number of sub scopes after forward: "
            << out_scope_vec->front()->kids().size();
249 250 251
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) DontClearMKLDNNCache(ctx.GetPlace());
#endif
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  }
};

template <typename DeviceContext, typename T>
class RunProgramGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    VLOG(2) << "RunProgramGradOpKernel Compute";
    // Step 1. prepare inputs and outputs
    auto &output_grad_vars = ctx.MultiInputVar(framework::GradVarName("Out"));
    auto input_grad_vars = ctx.MultiOutputVar(framework::GradVarName("X"));
    auto param_grad_vars = ctx.MultiOutputVar(framework::GradVarName("Params"));

    // if all output vars are set to stop_gradient, grad op no need to executed
    if (input_grad_vars.empty() && param_grad_vars.empty()) return;

    auto output_grad_var_names = ctx.InputNames(framework::GradVarName("Out"));
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> input_grad_var_names;
    std::vector<std::string> param_grad_names;
    if (!input_grad_vars.empty()) {
      input_grad_var_names = ctx.OutputNames(framework::GradVarName("X"));
    }
    if (!param_grad_vars.empty()) {
      param_grad_names = ctx.OutputNames(framework::GradVarName("Params"));
    }

    auto *block = ctx.Attr<BlockDesc *>("global_block");
    auto orig_end_op_index = ctx.Attr<int64_t>("end_op_index");
    // NOTE: skip `shape` and `fill_constant` op created by
284 285
    // fluid.backward.gradients, one forward output will generate one `shape`
    // and `fill_constant`
286 287 288 289 290 291 292 293
    int64_t start_op_index = orig_end_op_index + (output_grad_vars.size() * 2);
    int64_t end_op_index = block->OpSize();

    auto *out_scope_vec = ctx.Input<StepScopeVar>("OutScope");
    PADDLE_ENFORCE_EQ(
        out_scope_vec->size(), 1,
        platform::errors::InvalidArgument(
            "The OutScope of RunProgramGradOp should only hold one scope."));
294 295 296 297 298 299 300 301 302 303

    framework::Scope *global_inner_scope = out_scope_vec->front();
    auto sub_scope_num = global_inner_scope->kids().size();
    VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
    PADDLE_ENFORCE_GT(sub_scope_num, 0,
                      platform::errors::InvalidArgument(
                          "The OutScope of RunProgramGradOp should hold at "
                          "least one sub scope."));

    auto &scope = *(global_inner_scope->kids().front());
304

305 306 307
    if (end_op_index > start_op_index) {
      // Step 2. prepare executor and scope
      auto *program = ctx.Attr<BlockDesc *>("global_block")->Program();
308 309 310 311
      auto cache_key = framework::ExecutorInfoCache::CacheKey(
          program, ctx.GetPlace(), start_op_index, end_op_index,
          /*is_grad*/ true);
      auto cache_info = framework::GetExecutorInfoFromCache(cache_key, &scope);
312 313
      auto &parallel_executor = cache_info.first;

314 315
      parallel_executor->SkipMemoryReuse(/*scope_idx=*/0,
                                         output_grad_var_names);
316 317 318 319 320 321

      details::ShareVarsIntoScope(output_grad_vars, output_grad_var_names,
                                  &scope);
      // Debug info: scope info when run end
      VLOG(3) << framework::GenScopeTreeDebugInfo(out_scope_vec->front());

322 323 324 325
      std::vector<std::string> skip_eager_delete_vars(input_grad_var_names);
      framework::details::AppendSkipDeletionVars(param_grad_names,
                                                 &skip_eager_delete_vars);

326 327 328 329
      // Step 3. run ops
      parallel_executor->RunWithoutFetch(
          /*skip_eager_delete_vars=*/skip_eager_delete_vars);
    }
330

331 332 333
    // Step 4. get outputs
    details::ShareVarsFromScope(input_grad_vars, input_grad_var_names, &scope);
    details::ShareVarsFromScope(param_grad_vars, param_grad_names, &scope);
334 335 336 337 338

    // Step5. drop current scope
    global_inner_scope->DeleteScope(&scope);
    VLOG(2) << "The number of sub scopes after backward: "
            << global_inner_scope->kids().size();
339 340 341 342 343
  }
};

}  // namespace operators
}  // namespace paddle