layers.py 233.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Y
yangyaming 已提交
146
    'sub_seq_layer',
Y
yangyaming 已提交
147
    'mul_value_layer',
Q
qijun 已提交
148
]
Z
zhangjinchao01 已提交
149 150 151 152 153 154 155


class LayerType(object):
    """
    Layer type enumerations.
    """

156 157 158 159 160 161 162 163
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
164
    POOLING_AVG = 'average'
165
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
166
    COST = 'cost'
167 168
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
169
    HSIGMOID = 'hsigmoid'
170 171 172 173 174
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
175
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
176
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
177
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
178 179 180
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
181
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
182 183 184 185
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
186
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
194
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
195 196 197
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
198
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
199
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
200
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
201 202 203 204 205 206 207 208 209 210 211

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
212
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
213
    BLOCK_EXPAND = "blockexpand"
214
    MAXOUT = "maxout"
Q
qijun 已提交
215
    SPP_LAYER = "spp"
D
dangqingqing 已提交
216
    PAD_LAYER = "pad"
W
wwhu 已提交
217
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
218
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
219 220 221

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
222 223
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
224 225 226 227 228

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
229
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
230

231 232 233
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

234 235
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
236
    HUBER_REGRESSION = 'huber_regression'
237
    HUBER_CLASSIFICATION = 'huber_classification'
238 239
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
240
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
241 242 243 244 245 246
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
247
    SWITCH_ORDER_LAYER = 'switch_order'
248
    CROP_LAYER = 'crop'
C
caoying03 已提交
249
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
250
    CLIP_LAYER = 'clip'
251
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
252

253
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
254
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
255

256
    RESIZE = 'resize'
Y
yangyaming 已提交
257
    SUB_SEQ_LAYER = 'subseq'
258

Y
yangyaming 已提交
259 260
    MUL_VALUE_LAYER = 'mul_value'

Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
281
    """
L
Luo Tao 已提交
282
    PaddlePaddle supports three sequence types:
283 284 285

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
286 287
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
288

L
Luo Tao 已提交
289
    Accordingly, AggregateLevel supports two modes:
290

L
Luo Tao 已提交
291
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
292
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
293 294
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
295
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
296 297 298
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
299 300
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
301 302 303
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
326
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
327 328
    """

Q
qijun 已提交
329 330 331 332 333 334 335 336 337
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
338
                 reverse=None):
Z
zhangjinchao01 已提交
339 340
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
341
        assert size is not None
Z
zhangjinchao01 已提交
342 343
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
344
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
345
        self.layer_type = layer_type
346 347
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
348 349 350 351 352 353 354 355
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
356
        self.reverse = reverse
Z
zhangjinchao01 已提交
357

358 359 360 361 362 363 364 365
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

366 367 368 369
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

370 371 372 373 374 375 376 377
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
378 379 380

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
381
DEVICE = 'device'
Z
zhangjinchao01 已提交
382 383 384


def layer_support(*attrs):
385
    attrs_list = list(attrs)
386
    attrs_list.append(DEVICE)
Q
qijun 已提交
387

Z
zhangjinchao01 已提交
388 389 390
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
391
            for attr in attrs_list:
Z
zhangjinchao01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
408 409 410 411 412
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
443
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
444 445 446 447 448 449 450 451
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
452 453
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
454 455 456 457
    proj.origin = input
    return proj


458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
479
    :param input: The input of this layer.
480 481 482 483 484 485 486 487
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
488 489
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
490 491 492 493
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
524
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
525 526 527 528 529 530 531 532
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
533 534
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
535 536 537 538
    proj.origin = input
    return proj


539
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
569
    :param input: The input of this layer.
570
    :type input: LayerOutput
Z
zhangjinchao01 已提交
571 572
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
573
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
574 575 576 577 578 579
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
580 581
        if size is None:
            size = input.size - offset
Q
qijun 已提交
582
        proj = IdentityOffsetProjection(
583
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
584 585 586 587
        proj.origin = input
    return proj


588 589
def slice_projection(input, slices):
    """
590 591
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
592 593

    .. math::
594
       output = [input.slices()]
595 596 597 598 599 600 601 602 603

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
604
    :param input: The input of this layer.
605 606 607 608
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
609
    :type slices: pair of int
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
642
    :param input: The input of this layer.
X
xuwei06 已提交
643 644 645 646 647 648
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
649
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
650 651 652 653
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
654
@wrap_param_attr_default()
655
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
656
    """
657
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
671
    :param input: The input of this layer.
672 673 674 675 676 677
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
678 679
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
680
    proj.origin = input
681
    return proj
Z
zhangjinchao01 已提交
682

683 684

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
685 686
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
687

Z
zhangjinchao01 已提交
688
    .. math::
L
Luo Tao 已提交
689
       out.row[i] += scale * (a.row[i] .* b.row[i])
690

Z
zhangjinchao01 已提交
691 692
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
693

Z
zhangjinchao01 已提交
694
    The example usage is:
695

Z
zhangjinchao01 已提交
696
    .. code-block:: python
697

L
Luo Tao 已提交
698
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
699

700 701 702 703
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
704 705
    :param scale: config scalar, default value is one.
    :type scale: float
706 707
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
708
    """
709 710 711
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
712
    a = kwargs.get('x', a)  # For Backward capacity.
713 714 715 716 717 718
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
719
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
720
    op.origin = [a, b]
721
    return op
Z
zhangjinchao01 已提交
722

723

Z
zhangjinchao01 已提交
724
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
725 726 727
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
742
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
752
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
753 754 755 756 757 758 759 760 761 762 763
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
764 765 766 767 768 769
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
783
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
784 785 786 787 788 789
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
790
        :param act: Activation type.
Z
zhangjinchao01 已提交
791
        :type act: BaseActivation
792 793 794 795
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
R
ranqiu 已提交
796
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
797 798 799
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
800 801 802 803 804 805 806
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
807 808 809 810 811
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

812
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
813 814 815 816 817 818 819 820
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
821
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
822
            self.inputs.append(other)
823 824 825 826
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
827 828 829 830 831 832 833 834
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

835
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
836 837
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
838
        assert len(self.inputs) != 0
839
        ml = MixedLayer(
Z
zhangjinchao01 已提交
840 841 842 843 844
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
845
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
846 847 848
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
849
        self.finalized = True
Z
zhangjinchao01 已提交
850 851 852 853 854 855


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
856 857 858 859 860
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
888
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
889
                  then this function will just return layer's name.
R
ranqiu 已提交
890
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
891
    :type act: BaseActivation
892 893 894 895
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
896
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
897 898 899 900 901 902 903 904 905
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
906 907 908 909 910 911
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
912
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
913 914 915 916 917 918 919 920
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
921 922
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
923 924 925 926 927 928 929
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
930
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
931

R
ranqiu 已提交
932
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
933 934 935
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
936
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
937
    :type height: int | None
L
Luo Tao 已提交
938
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
939
    :type width: int | None
Z
zhangjinchao01 已提交
940 941
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
943 944
    :rtype: LayerOutput
    """
Q
qijun 已提交
945 946 947 948
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
949
        depth=depth,
L
Luo Tao 已提交
950 951
        height=height,
        width=width,
Q
qijun 已提交
952
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
953

C
chengduoZH 已提交
954 955
    if depth is None:
        depth = 1
956 957
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
958 959
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
960
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
961 962

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
963 964 965 966


@wrap_name_default("embedding")
@wrap_param_attr_default()
967
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
968 969 970 971
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
973
    :type name: basestring
R
ranqiu 已提交
974
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
975 976 977 978 979
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
980
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
981
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
982
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
983
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
984 985
    :rtype: LayerOutput
    """
Q
qijun 已提交
986 987 988 989 990 991
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
992 993 994 995 996 997 998 999 1000
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1001 1002 1003 1004 1005 1006 1007
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1020
    which is equal to:
Z
zhangjinchao01 已提交
1021 1022 1023 1024 1025 1026

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1027
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1028
    :type name: basestring
R
ranqiu 已提交
1029 1030
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1031 1032
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1033
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1034 1035 1036
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1037 1038 1039 1040
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1041
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1042
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1043
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1044
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1045 1046 1047 1048
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1049
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1050 1051
        param_attr = [param_attr]
    else:
1052
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1053 1054
            assert len(input) == len(param_attr)
        else:
1055
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1056
                logger.fatal(
W
wangmeng28 已提交
1057 1058 1059 1060 1061
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1062 1063
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1064
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1065 1066

    Layer(
Q
qijun 已提交
1067 1068 1069
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1070 1071 1072 1073 1074
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1075 1076 1077
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1078

1079

1080
@wrap_name_default("print")
1081
def printer_layer(input, format=None, name=None):
1082 1083
    """
    Print the output value of input layers. This layer is useful for debugging.
1084

1085
    :param name: The name of this layer. It is optional.
1086
    :type name: basestring
R
ranqiu 已提交
1087 1088
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1089
    :return: LayerOutput
1090
    """
1091 1092 1093 1094 1095
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1096 1097 1098

    Layer(
        name=name,
1099
        format=format,
1100
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1101
        inputs=[l.name for l in input], )
1102
    # this layer don't return anything, can not be input of other layer.
1103

X
xuwei06 已提交
1104 1105 1106 1107 1108 1109 1110
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1111

Y
yuan 已提交
1112
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1113
def priorbox_layer(input,
G
gaoyuan 已提交
1114
                   image,
G
gaoyuan 已提交
1115 1116 1117 1118 1119
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1120 1121 1122
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1123
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1124
    :type name: basestring
R
ranqiu 已提交
1125
    :param input: The input of this layer.
Y
yuan 已提交
1126
    :type input: LayerOutput
G
gaoyuan 已提交
1127 1128
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1140
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1141 1142 1143
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1144
        inputs=[input.name, image.name],
Y
yuan 已提交
1145 1146 1147 1148 1149 1150
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1151 1152
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1153
        parents=[input, image],
G
gaoyuan 已提交
1154 1155 1156
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1172
    :param name: The name of this layer. It is optional.
1173
    :type name: basestring
Y
yangyaming 已提交
1174 1175
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1176
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1177
    :type input_conf: LayerOutput | List of LayerOutput
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1199
    input_loc_num = len(input_loc)
1200 1201 1202 1203 1204 1205

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1206
    input_conf_num = len(input_conf)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1244 1245
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1246

1247
    :param name: The name of this layer. It is optional.
1248
    :type name: basestring
Y
yangyaming 已提交
1249 1250
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1251
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1252
    :type input_conf: LayerOutput | List of LayerOutput.
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1274
    input_loc_num = len(input_loc)
1275 1276 1277 1278 1279 1280

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1281 1282
    input_conf_num = len(input_conf)

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1311 1312
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1313 1314 1315 1316 1317
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1318

1319
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1320
    :type name: basestring
R
ranqiu 已提交
1321
    :param input: The input of this layer.
G
gaoyuan 已提交
1322 1323 1324 1325 1326
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1327
    assert input.num_filters is not None
G
gaoyuan 已提交
1328 1329
    Layer(
        name=name,
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1343 1344
    return LayerOutput(
        name,
1345
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1346 1347 1348 1349 1350
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1351 1352 1353 1354
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1355 1356 1357 1358
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1359
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1360
                  stride=-1,
Z
zhangjinchao01 已提交
1361 1362 1363 1364
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1365 1366
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1367 1368 1369
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1370
    operation. Note that for sequence with sub-sequence, the default value
1371 1372
    of stride is -1.

Z
zhangjinchao01 已提交
1373 1374 1375 1376 1377 1378
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1379
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1380

L
Luo Tao 已提交
1381 1382
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1383
    :type agg_level: AggregateLevel
1384
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1385
    :type name: basestring
R
ranqiu 已提交
1386
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1387 1388 1389
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1390
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1391
    :param stride: The step size between successive pooling regions.
1392
    :type stride: Int
1393 1394 1395 1396
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1397
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1398
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1399
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1400
    :return: LayerOutput object.
Y
Yu Yang 已提交
1401
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1402 1403
    """
    extra_dict = dict()
1404
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1405 1406
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1407 1408 1409 1410
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1411 1412
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1413 1414 1415
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1416 1417 1418 1419 1420 1421
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1422
        stride=stride,
Q
qijun 已提交
1423
        **extra_dict)
Z
zhangjinchao01 已提交
1424

Q
qijun 已提交
1425 1426
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1427

Q
qijun 已提交
1428

Z
zhangjinchao01 已提交
1429 1430
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1431
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1432 1433
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1434
@layer_support()
Q
qijun 已提交
1435 1436
def lstmemory(input,
              name=None,
1437
              size=None,
Q
qijun 已提交
1438 1439 1440 1441 1442 1443
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1444 1445 1446 1447 1448 1449 1450 1451
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1452
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1453

L
luotao02 已提交
1454
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1455

L
luotao02 已提交
1456
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1457

L
luotao02 已提交
1458
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1459

L
luotao02 已提交
1460
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1461 1462


C
caoying03 已提交
1463
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1464
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1465 1466 1467 1468
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1469

C
caoying03 已提交
1470
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1471 1472
    to config a simple plain lstm layer.

C
caoying03 已提交
1473 1474 1475 1476
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1477 1478 1479 1480 1481

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1482 1483
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1484
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1485 1486 1487
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1488
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1489 1490 1491 1492 1493
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1494 1495 1496 1497
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1498
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1499
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1500
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1501
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1502
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1503
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1504 1505 1506 1507 1508 1509
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1510
    assert input.size is not None and input.size % 4 == 0
1511

1512 1513 1514 1515 1516
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1517 1518 1519
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1520

Q
qijun 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1531

Q
qijun 已提交
1532 1533 1534 1535 1536
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1537

Z
zhangjinchao01 已提交
1538 1539 1540

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1541
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1542 1543
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1544
@layer_support()
Q
qijun 已提交
1545
def grumemory(input,
1546
              size=None,
Q
qijun 已提交
1547 1548 1549 1550 1551 1552
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1574 1575
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1576 1577 1578 1579 1580

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1581 1582 1583
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1584 1585 1586 1587 1588

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1589
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1590
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1591 1592 1593
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1594

C
caoying03 已提交
1595 1596 1597
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1598 1599 1600 1601 1602 1603 1604 1605

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1606 1607
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1608
    :type input: LayerOutput.
1609 1610
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1611
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1612
    :type reverse: bool
R
ranqiu 已提交
1613
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1614 1615 1616 1617 1618 1619
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1620 1621 1622 1623
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1624
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1625
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1626
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1627
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1628
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1629
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1630 1631 1632 1633
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1634 1635 1636 1637 1638 1639
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1640 1641 1642
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1643

Q
qijun 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1653

Q
qijun 已提交
1654 1655 1656 1657 1658
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1659

Z
zhangjinchao01 已提交
1660 1661 1662

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1663 1664
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1665
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1666
             stride=-1,
Z
zhangjinchao01 已提交
1667 1668 1669 1670
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1671 1672 1673
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1674
    of stride is -1.
1675

L
Luo Tao 已提交
1676 1677 1678 1679 1680 1681
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1682
    :param agg_level: Aggregated level
1683
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1684
    :type name: basestring
R
ranqiu 已提交
1685
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1686
    :type input: LayerOutput
L
Luo Tao 已提交
1687
    :param stride: The step size between successive pooling regions.
1688
    :type stride: Int
Z
zhangjinchao01 已提交
1689 1690
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1691
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1692 1693
    :rtype: LayerOutput
    """
1694 1695 1696 1697 1698 1699
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1700
    if agg_level == AggregateLevel.TO_SEQUENCE:
1701 1702
        assert stride == -1

Z
zhangjinchao01 已提交
1703 1704 1705 1706 1707
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1708
        stride=stride,
Q
qijun 已提交
1709 1710 1711 1712 1713 1714
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1715 1716 1717 1718


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1719 1720
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1721
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1722
              stride=-1,
Z
zhangjinchao01 已提交
1723 1724 1725 1726
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1727 1728 1729
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1730
    of stride is -1.
1731

L
Luo Tao 已提交
1732 1733 1734 1735 1736 1737
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1738
    :param agg_level: aggregation level
1739
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1740
    :type name: basestring
R
ranqiu 已提交
1741
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1742
    :type input: LayerOutput
L
Luo Tao 已提交
1743
    :param stride: The step size between successive pooling regions.
1744
    :type stride: Int
Z
zhangjinchao01 已提交
1745 1746
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1747
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1748 1749
    :rtype: LayerOutput
    """
1750 1751 1752 1753 1754 1755 1756

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1757
    if agg_level == AggregateLevel.TO_SEQUENCE:
1758 1759
        assert stride == -1

Z
zhangjinchao01 已提交
1760 1761 1762 1763 1764
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1765
        stride=stride,
Q
qijun 已提交
1766 1767 1768 1769 1770 1771
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1772 1773 1774


class ExpandLevel(object):
1775 1776 1777 1778 1779
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1780 1781
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1782 1783
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1784 1785
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1786 1787
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1788 1789
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1790 1791
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1792

1793

Z
zhangjinchao01 已提交
1794 1795
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1796 1797
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1798 1799
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1800
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1812
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1813

R
ranqiu 已提交
1814
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1815 1816 1817
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1818
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1819
    :type name: basestring
1820 1821 1822 1823
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1824
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1825 1826 1827 1828
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1829
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1839 1840 1841 1842 1843 1844
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1845 1846


X
xuwei06 已提交
1847
@wrap_name_default()
X
xuwei06 已提交
1848
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1849
@layer_support()
X
xuwei06 已提交
1850 1851 1852
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1853
                 act=None,
X
xuwei06 已提交
1854 1855
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1856
    """
X
xuwei06 已提交
1857
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1858

X
xuwei06 已提交
1859
    If as_row_vector:
X
xuwei06 已提交
1860
    .. math::
X
xuwei06 已提交
1861 1862 1863 1864 1865
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1866 1867 1868 1869 1870

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1871
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1872

R
ranqiu 已提交
1873
    :param input: The input of this layer.
X
xuwei06 已提交
1874 1875 1876
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1877
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1878 1879 1880 1881 1882 1883
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1884
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1885
    :type act: BaseActivation
X
xuwei06 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1896
        active_type=act.name,
X
xuwei06 已提交
1897
        num_filters=num_repeats,
X
xuwei06 已提交
1898
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1899
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1900 1901 1902 1903 1904
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1905
        activation=act,
Q
qijun 已提交
1906 1907
        parents=[input])

X
xuwei06 已提交
1908

1909 1910 1911
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1912
@layer_support(ERROR_CLIPPING, DROPOUT)
1913 1914 1915 1916 1917 1918 1919 1920
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1921
    the dimension of each instance is M, and the input reshape_size is N, then the
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1932
    :param input: The input of this layer.
1933 1934 1935
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1936
    :param name: The name of this layer. It is optional.
1937
    :type name: basestring
R
ranqiu 已提交
1938
    :param act: Activation type. IdentityActivation is the default.
1939 1940 1941
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1942 1943 1944 1945
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1946
    :type bias_attr: ParameterAttribute | None | bool | Any
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1985 1986
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1987 1988
    :param weight: Weight layer.
    :type weight: LayerOutput
1989
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1990 1991 1992
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1993
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1994 1995
    :rtype: LayerOutput
    """
1996
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1997
    assert len(input) == 2
1998 1999 2000 2001 2002 2003 2004
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2005 2006 2007 2008
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2009 2010 2011 2012 2013 2014
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2015 2016


L
liaogang 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2033
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2034

L
liaogang 已提交
2035
    :param   input:        A input layer.
L
liaogang 已提交
2036
    :type    input:        LayerOutput.
L
liaogang 已提交
2037
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2038
    :type    out_size_x:   int | None
L
liaogang 已提交
2039
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2040
    :type    out_size_y:   int | None
L
liaogang 已提交
2041
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2042
    :type    name:         None | basestring
L
liaogang 已提交
2043
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2044 2045 2046 2047 2048 2049 2050
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2051
    assert input.num_filters is not None
L
liaogang 已提交
2052
    num_channels = input.num_filters
Q
qijun 已提交
2053 2054 2055 2056 2057 2058 2059
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2060
                channels=num_channels)),
Q
qijun 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2070

Z
zhangjinchao01 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2090
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2091 2092 2093
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2094
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2095 2096 2097
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2098
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2099 2100
    :rtype: LayerOutput
    """
2101 2102 2103
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2104 2105 2106
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2107
        inputs=[weight.name, input.name],
Q
qijun 已提交
2108 2109 2110
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2111 2112 2113 2114 2115 2116


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2117
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2118 2119

    .. math::
2120
       y  = w x
Z
zhangjinchao01 已提交
2121

2122 2123 2124 2125 2126
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2127 2128 2129 2130 2131 2132 2133

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2134
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2135 2136 2137
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2138
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2139 2140 2141
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2142
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2143 2144
    :rtype: LayerOutput
    """
2145 2146 2147
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2148 2149 2150 2151
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2152 2153 2154
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2155 2156 2157 2158 2159 2160


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2161
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2174
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2175
    :type input: LayerOutput
2176
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2177 2178 2179
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2180
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2181 2182 2183 2184 2185 2186
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2187 2188 2189
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2190 2191


2192 2193
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2194
def rotate_layer(input, height, width, name=None, layer_attr=None):
2195
    """
H
Haonan 已提交
2196 2197
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2198 2199

    .. math::
H
Haonan 已提交
2200
       y(j,i,:) = x(M-i-1,j,:)
2201

H
Haonan 已提交
2202
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2203 2204 2205 2206 2207 2208

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2209 2210
                          height=100,
                          width=100)
2211

R
ranqiu 已提交
2212
    :param input: The input of this layer.
2213 2214 2215
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2216
    :param name: The name of this layer. It is optional.
2217 2218 2219 2220 2221 2222 2223
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2224 2225 2226
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2227
        width=width,
H
Haonan 已提交
2228 2229 2230 2231 2232 2233 2234 2235
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2236 2237


Z
zhangjinchao01 已提交
2238 2239
@wrap_name_default()
@layer_support()
2240
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2241 2242 2243 2244
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2245
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2246 2247 2248 2249 2250
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2251

2252 2253
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2254

L
Luo Tao 已提交
2255 2256 2257 2258 2259 2260
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2261
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2273
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2274 2275
    :rtype: LayerOutput
    """
2276
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2277 2278 2279 2280 2281 2282
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2283
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2284
    else:
2285 2286
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2287 2288 2289 2290 2291 2292
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2293
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2294
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2295

2296

Z
zhangjinchao01 已提交
2297 2298
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2299
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2300
@layer_support()
Q
qijun 已提交
2301 2302
def hsigmoid(input,
             label,
2303
             num_classes=None,
Q
qijun 已提交
2304 2305 2306 2307
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2319
                        label=data_layer)
Z
zhangjinchao01 已提交
2320

R
ranqiu 已提交
2321 2322
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2323 2324 2325
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2326
    :type num_classes: int | None
2327
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2328
    :type name: basestring
2329 2330 2331 2332
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2333
    :type bias_attr: ParameterAttribute | None | bool | Any
2334
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2335
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2336 2337
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2338
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2339 2340 2341 2342
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2343 2344 2345 2346 2347 2348 2349 2350 2351
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2352 2353 2354
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2355 2356 2357 2358 2359
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2360 2361
    ipts_for_layer = []
    parents = []
2362
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2363
        assert isinstance(each_input, LayerOutput)
2364
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2365 2366 2367 2368
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2369
    l = Layer(
Z
zhangjinchao01 已提交
2370 2371 2372 2373 2374
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2375 2376 2377
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2378

2379

Z
zhangjinchao01 已提交
2380 2381 2382 2383 2384
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2394
                   dilation=1,
Q
qijun 已提交
2395 2396 2397 2398 2399 2400 2401
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2402
                   dilation_y=None,
2403 2404
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2405
    """
2406
    Convolution layer for image. Paddle can support both square and non-square
2407
    input currently.
Z
zhangjinchao01 已提交
2408 2409 2410 2411

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2412

2413
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2414
    and non-square input currently.
2415

X
xuwei06 已提交
2416
    The details of convolution transpose layer,
2417 2418 2419
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2420 2421 2422 2423
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2424 2425 2426
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2427
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2428 2429
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2430

L
Luo Tao 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2441
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2442
    :type name: basestring
R
ranqiu 已提交
2443
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2444
    :type input: LayerOutput
2445 2446
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2447
    :type filter_size: int | tuple | list
C
caoying03 已提交
2448 2449 2450
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2451
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2452
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2453
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2454 2455 2456
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2457 2458
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2459
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2460 2461
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2462 2463
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2464
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2465 2466
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2467 2468
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2469
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2470 2471
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2472 2473 2474 2475
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2476
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2486 2487
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2488
    :param layer_type: specify the layer_type, default is None. If trans=True,
2489 2490
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2491
                       "cudnn_conv"
2492
    :type layer_type: String
D
dangqingqing 已提交
2493
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2494 2495 2496 2497 2498
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2499

Z
zhangjinchao01 已提交
2500
    if filter_size_y is None:
2501 2502 2503 2504 2505 2506
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2507
    if stride_y is None:
2508 2509 2510 2511 2512 2513
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2514
    if padding_y is None:
2515 2516 2517 2518 2519 2520
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2521 2522 2523 2524 2525 2526 2527
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2528 2529
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2530
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2531 2532 2533 2534
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2535

2536
    if layer_type:
W
wanghaoshuang 已提交
2537 2538
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2539
        if trans:
2540
            assert layer_type in ["exconvt", "cudnn_convt"]
2541 2542 2543 2544 2545
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2546

X
xuwei06 已提交
2547
    l = Layer(
Z
zhangjinchao01 已提交
2548
        name=name,
Q
qijun 已提交
2549 2550 2551 2552 2553
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2554
                dilation=dilation,
Q
qijun 已提交
2555 2556 2557 2558 2559
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2560
                dilation_y=dilation_y,
Q
qijun 已提交
2561 2562
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2563 2564 2565 2566
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2567
        type=lt,
Q
qijun 已提交
2568 2569 2570 2571 2572 2573 2574 2575
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2576 2577 2578 2579


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2590 2591
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2592 2593 2594 2595 2596 2597 2598
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2627
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2628
    :type padding: int
2629
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2630
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2631 2632
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2633
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2634
    :type input: LayerOutput
2635
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2636
    :type pool_size: int
2637
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2638
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2639 2640
    :param num_channels: number of input channel.
    :type num_channels: int
2641
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2642 2643
                      MaxPooling.
    :type pool_type: BasePoolingType
2644
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2645
    :type stride: int
2646
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2647
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2648 2649
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2650 2651 2652 2653
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2654 2655
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2666 2667 2668 2669
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2670
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2671
        if (
Y
Yu Yang 已提交
2672
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2673
        else pool_type.name
2674 2675 2676 2677
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2678
    l = Layer(
Z
zhangjinchao01 已提交
2679 2680
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2693
                    padding_y=padding_y))
Q
qijun 已提交
2694
        ],
2695
        ceil_mode=ceil_mode,
Q
qijun 已提交
2696 2697 2698 2699 2700 2701 2702
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2703 2704


C
chengduoZH 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2757
    :type padding: int | tuple | list
C
chengduoZH 已提交
2758 2759
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2760
    :param input: The input of this layer.
C
chengduoZH 已提交
2761 2762
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2763
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2764 2765 2766 2767 2768 2769
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2770
    :type stride: int | tuple | list
C
chengduoZH 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2845 2846
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2847 2848 2849 2850 2851 2852
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2853 2854 2855 2856 2857
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2858 2859 2860 2861
    The example usage is:

    ..  code-block:: python

2862 2863 2864
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2865 2866
                        pool_type=MaxPooling())

2867
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2868
    :type name: basestring
R
ranqiu 已提交
2869
    :param input: The input of this layer.
Q
qijun 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2895
    l = Layer(
Q
qijun 已提交
2896 2897
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2898 2899 2900 2901 2902
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2903
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2915 2916 2917 2918
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2919
    l = Layer(
Q
qijun 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2939 2940 2941 2942


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2943 2944 2945 2946 2947 2948
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2949
                      layer_attr=None):
Z
zhangjinchao01 已提交
2950
    """
2951
    Response normalization across feature maps.
D
dangqingqing 已提交
2952 2953
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2954

L
Luo Tao 已提交
2955 2956 2957
    The example usage is:

    ..  code-block:: python
2958

L
Luo Tao 已提交
2959 2960
        norm = img_cmrnorm_layer(input=net, size=5)

2961
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2962 2963
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2964
    :type input: LayerOutput
2965
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2966
    :type size: int
D
dangqingqing 已提交
2967
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2968
    :type scale: float
D
dangqingqing 已提交
2969
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2970 2971 2972 2973 2974
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2975
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2976 2977 2978
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2979
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2980 2981 2982


@wrap_bias_attr_default()
2983 2984
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2985 2986
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2987
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2988 2989 2990
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2991
                     img3D=False,
Q
qijun 已提交
2992 2993 2994 2995
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2996 2997
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2998 2999
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3018 3019 3020
    The example usage is:

    ..  code-block:: python
3021

L
Luo Tao 已提交
3022 3023
        norm = batch_norm_layer(input=net, act=ReluActivation())

3024
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3025 3026 3027 3028
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3039
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3040
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3041
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3051
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3063
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3064 3065 3066 3067 3068
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3069 3070
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3071
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3081
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3082
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3083
    l = Layer(
Z
zhangjinchao01 已提交
3084
        name=name,
C
chengduoZH 已提交
3085
        img3D=img3D,
Q
qijun 已提交
3086 3087
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3088 3089 3090 3091 3092 3093
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3094
        mean_var_names=mean_var_names,
Q
qijun 已提交
3095
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3096

Q
qijun 已提交
3097 3098 3099 3100 3101 3102 3103
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3125
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3126
    :type input: LayerOutput
3127
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3128 3129 3130
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3132 3133 3134 3135 3136 3137
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3138 3139 3140
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3141 3142


G
guosheng 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3161
    :param input: The input of this layer.
G
guosheng 已提交
3162
    :type input: LayerOutput
3163
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3179 3180 3181
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3182
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3183
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3206 3207 3208
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3209 3210

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3211 3212
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3213 3214
    Please refer to dropout_layer for details.

3215
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3216 3217 3218
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3219 3220
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3221
    :type act: BaseActivation
3222 3223 3224 3225
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3226
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3227 3228
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3229
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3230 3231 3232 3233 3234 3235
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3236
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3237 3238 3239 3240 3241 3242 3243
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3244
    l = Layer(
Q
qijun 已提交
3245 3246 3247
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3248 3249
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3250
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3251

Q
qijun 已提交
3252 3253 3254 3255 3256 3257 3258
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3259 3260 3261 3262


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3263
@layer_support(DROPOUT, ERROR_CLIPPING)
3264
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3265 3266 3267 3268
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3269 3270 3271 3272 3273 3274
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3275
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3276 3277
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3278 3279
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3280 3281 3282
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3283
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3284 3285 3286 3287 3288 3289 3290 3291
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3292
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3293 3294

    def __is_type__(o, tp):
3295
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3317 3318
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3319

Q
qijun 已提交
3320 3321
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3322

3323 3324
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3325

3326
    layer = Layer(
Q
qijun 已提交
3327 3328
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3329 3330
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3331
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3332
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3333

3334
    sz = layer.config.size
Z
zhangjinchao01 已提交
3335

Q
qijun 已提交
3336 3337 3338 3339 3340 3341 3342 3343
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3344 3345
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3346
@wrap_bias_attr_default(has_bias=False)
3347
@layer_support(DROPOUT, ERROR_CLIPPING)
3348 3349 3350 3351
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3352

3353
    Inputs:
X
xuwei06 已提交
3354
      - a = [a1, a2, ..., am]
3355
      - b = [b1, b2, ..., bn]
3356

X
xuwei06 已提交
3357 3358 3359 3360
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3361 3362 3363 3364 3365 3366 3367

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3368
    :param name: The name of this layer. It is optional.
3369 3370 3371 3372 3373
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3374
    :param act: Activation type. IdentityActivation is the default.
3375 3376 3377
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3378 3379 3380 3381
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3382
    :type bias_attr: ParameterAttribute | None | bool | Any
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3404
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3405 3406
def memory(name,
           size,
3407
           memory_name=None,
Q
qijun 已提交
3408 3409 3410 3411
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3432 3433 3434 3435 3436 3437 3438 3439 3440
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3441

3442 3443 3444 3445 3446 3447 3448
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3449 3450 3451
    :type name: basestring
    :param size: size of memory.
    :type size: int
3452 3453 3454
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3455
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3456 3457
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3458
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3459
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3460
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3461 3462 3463 3464
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3465
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3476 3477
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3478

3479 3480 3481 3482 3483 3484 3485 3486
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3487 3488

    lout = LayerOutput(
3489
        name=memory_name,
Q
qijun 已提交
3490 3491 3492
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3493 3494 3495 3496
    return lout


@wrap_bias_attr_default()
3497 3498
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3499 3500 3501
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3502 3503
def lstm_step_layer(input,
                    state,
3504
                    size=None,
Q
qijun 已提交
3505 3506 3507 3508 3509 3510
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3511
    """
3512 3513
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3514 3515 3516

    ..  math::

3517
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3518

3519
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3520

3521
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3522

3523
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3524

L
luotao02 已提交
3525
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3526 3527


L
luotao02 已提交
3528
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3529
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3530
    input vectors.
Z
zhangjinchao01 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3541 3542
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3543 3544
    :code:`get_output_layer` to extract this output.

3545
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3546
    :type name: basestring
3547 3548
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3549 3550 3551 3552 3553 3554
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3555
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3556
    :type act: BaseActivation
R
ranqiu 已提交
3557
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3558
    :type gate_act: BaseActivation
R
ranqiu 已提交
3559
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3560
    :type state_act: BaseActivation
3561 3562 3563 3564
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3565
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3566 3567
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3568
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3569 3570
    :rtype: LayerOutput
    """
3571 3572 3573

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3574 3575 3576 3577 3578 3579 3580
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3581
        size=state.size,
Q
qijun 已提交
3582 3583
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3584

Q
qijun 已提交
3585 3586 3587 3588 3589 3590 3591
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3592 3593 3594


@wrap_bias_attr_default()
W
wangyang59 已提交
3595
@wrap_param_attr_default()
Q
qijun 已提交
3596
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3597 3598 3599
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3600 3601 3602 3603 3604 3605 3606
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3607
                   param_attr=None,
Q
qijun 已提交
3608
                   layer_attr=None):
Z
zhangjinchao01 已提交
3609 3610 3611 3612 3613 3614 3615
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3616
    :type act: BaseActivation
3617
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3618 3619
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3620 3621 3622 3623
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3624
    :type bias_attr: ParameterAttribute | None | bool | Any
3625 3626
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3627
    :param layer_attr:
D
dangqingqing 已提交
3628
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3629 3630 3631 3632 3633 3634 3635 3636
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3637 3638 3639 3640
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3641
        # backward model compatibility.
3642
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3643 3644 3645 3646
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3647
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3648
    return LayerOutput(
Q
qijun 已提交
3649 3650
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3651
        parents=[input, output_mem],
Q
qijun 已提交
3652 3653
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3654 3655


Y
Yu Yang 已提交
3656 3657 3658 3659
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3660
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3678
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3679
    :param act:
R
ranqiu 已提交
3680 3681 3682
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3683 3684 3685 3686
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3687
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3688 3689 3690
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3691
    :rtype: LayerOutput
Y
Yu Yang 已提交
3692 3693 3694 3695 3696 3697
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3698
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3699 3700 3701 3702
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3703

Y
Yu Yang 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3741 3742 3743 3744
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3745 3746 3747 3748
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3749

3750
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3751 3752 3753 3754 3755 3756 3757
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3758
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3759 3760 3761 3762 3763 3764 3765
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3766 3767 3768 3769 3770 3771 3772
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3773

Q
qijun 已提交
3774 3775 3776 3777 3778
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3779 3780 3781 3782 3783 3784 3785


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3786 3787 3788 3789 3790 3791 3792
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3793
    """
3794 3795
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3796

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3812
    :param input: The input of this layer.
3813
    :type input: LayerOutput
R
ranqiu 已提交
3814
    :param act: Activation type. TanhActivation is the default.
3815
    :type act: BaseActivation
3816 3817 3818 3819
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3820
    :type bias_attr: ParameterAttribute | None | bool | Any
3821 3822
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3823
    :param name: The name of this layer. It is optional.
3824 3825 3826
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3827
    :return: LayerOutput object.
3828
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3829
    """
Q
qijun 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3845 3846 3847 3848 3849 3850


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3851 3852
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3853
    """
3854

Z
zhangjinchao01 已提交
3855 3856 3857
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3858
        assert input.size is not None
Z
zhangjinchao01 已提交
3859
        if size is not None:
3860
            assert input.size == size
Z
zhangjinchao01 已提交
3861 3862


3863
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3864
    """
3865
    DEPRECATED.
Z
zhangjinchao01 已提交
3866 3867 3868 3869 3870 3871 3872 3873
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3874
    return input
Z
zhangjinchao01 已提交
3875 3876 3877


@wrap_name_default("recurrent_group")
3878
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3879
    """
C
caoying03 已提交
3880 3881 3882 3883 3884
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3927
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3928

3929 3930
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3931
    :type reverse: bool
3932

3933 3934
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3935 3936 3937 3938 3939 3940 3941

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3942
    :type targetInlink: LayerOutput | SubsequenceInput
3943

D
dangqingqing 已提交
3944
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3945 3946 3947 3948
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3949
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3950
        input = [input]
3951
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3952 3953

    def is_in_links(x):
3954
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3955 3956 3957 3958

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3959
        name=name,
3960 3961
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3962 3963
    in_args = []
    for each_input in input:
3964
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3965
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3966
            mem = memory(
3967
                name=None,
Q
qijun 已提交
3968 3969
                size=each_input.input.size,
                boot_layer=each_input.input)
3970
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3971
            in_args.append(mem)
3972 3973
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3974

Z
zhangjinchao01 已提交
3975 3976 3977 3978 3979
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3980 3981 3982 3983 3984 3985
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3986 3987 3988

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3989
    for layer_out in layer_outs:
3990 3991
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3992 3993
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3994 3995 3996 3997 3998
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3999

Z
zhangjinchao01 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4028 4029

    def before_real_step(self):
Q
qijun 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4039 4040 4041
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4042
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4060
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4061
    :type input: LayerOutput
4062
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4063 4064 4065
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4066
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4067 4068 4069 4070
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4081

4082

H
Haonan 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4095
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4119

Z
zhangjinchao01 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4136
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4137
    :type name: basestring
R
ranqiu 已提交
4138
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4139 4140 4141 4142 4143
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4144
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4145 4146
    :rtype: LayerOutput
    """
Q
qijun 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4158 4159 4160


@wrap_name_default()
Q
qijun 已提交
4161 4162 4163 4164 4165 4166 4167
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4168
                num_results_per_sample=None):
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4180
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4181 4182 4183 4184
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4185 4186 4187 4188 4189
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4190 4191
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4192 4193
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4194 4195
                               bos_id=0,
                               eos_id=1,
4196
                               beam_size=5)
4197 4198 4199 4200 4201 4202 4203 4204 4205

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4206
                 step, and it is applied to sequences with arbitrary length by
4207 4208 4209 4210 4211
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4212 4213
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4214
                  In beam_search, none of the input's type should be LayerOutput.
4215
    :type input: list
4216 4217 4218
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4219
                   symbol is essential, since it is used to initialize the RNN
4220 4221 4222 4223 4224 4225 4226 4227
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4228 4229
    :param max_length: Max generated sequence length.
    :type max_length: int
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4240 4241
    :return: The generated word index.
    :rtype: LayerOutput
4242 4243
    """

Z
zhangjinchao01 已提交
4244 4245 4246 4247 4248
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4249
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4250 4251 4252 4253 4254 4255
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4256 4257 4258
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4259
        if isinstance(each_input, BaseGeneratedInput):
4260 4261
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4262
            generated_input_index = i
4263

Z
zhangjinchao01 已提交
4264 4265 4266
        else:
            real_input.append(each_input)

4267
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4268 4269 4270 4271 4272 4273 4274 4275

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4276 4277 4278 4279 4280 4281
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4282 4283 4284 4285 4286 4287

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4288
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4289 4290
        return predict

4291 4292
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4293

Q
qijun 已提交
4294

4295 4296
def __cost_input__(input, label, weight=None):
    """
4297
    inputs and parents for cost layers.
4298
    """
C
caoying03 已提交
4299 4300 4301 4302 4303 4304
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4305
    if weight is not None:
4306
        assert weight.size == 1
4307 4308 4309
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4310

Z
zhangjinchao01 已提交
4311 4312

@wrap_name_default()
L
luotao1 已提交
4313
@layer_support()
4314 4315 4316 4317 4318 4319
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4320
    """
4321
    sum of square error cost:
L
Luo Tao 已提交
4322 4323 4324

    ..  math::

4325
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4326

4327
    :param name: The name of this layer. It is optional.
4328
    :type name: basestring
Z
zhangjinchao01 已提交
4329
    :param input: Network prediction.
4330
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4331
    :param label: Data label.
4332 4333 4334 4335
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4336 4337
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4338 4339
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4340
    :return: LayerOutput object.
4341
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4342
    """
4343 4344
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4345 4346 4347 4348
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4349
        coeff=coeff,
Q
qijun 已提交
4350
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4351
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4352 4353


4354
regression_cost = square_error_cost
L
Luo Tao 已提交
4355 4356


Z
zhangjinchao01 已提交
4357
@wrap_name_default("cost")
4358
@layer_support()
Q
qijun 已提交
4359 4360 4361 4362
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4363
                        evaluator=classification_error_evaluator,
4364 4365
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4366 4367 4368
    """
    classification cost Layer.

4369
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4370 4371 4372 4373 4374
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4375 4376 4377
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4378
    :param evaluator: Evaluator method.
4379 4380
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4381 4382
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4383
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4384 4385 4386 4387 4388
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4389 4390 4391

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4392 4393 4394 4395
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4396
        coeff=coeff,
Q
qijun 已提交
4397
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4408
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4409

4410
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4411 4412 4413 4414 4415
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4416
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4417

4418

Q
qijun 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4428 4429
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4440 4441
       op = conv_operator(img=input1,
                          filter=input2,
4442
                          filter_size=3,
Z
zhangjinchao01 已提交
4443 4444 4445
                          num_filters=64,
                          num_channels=64)

4446 4447 4448 4449
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4450 4451
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4452 4453 4454
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4455
    :type filter_size_y: int
4456 4457
    :param num_filters: channel of output data.
    :type num_filters: int
4458 4459
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4460
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4461
    :type stride: int
Z
zhangjinchao01 已提交
4462
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4463
    :type stride_y: int
Z
zhangjinchao01 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4477

4478 4479
    if num_channels is None:
        num_channels = img.num_filters
4480 4481

    assert isinstance(filter, LayerOutput)
4482
    assert filter.size is not None
4483

4484 4485 4486
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4498

4499
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4500 4501
    return op

Q
qijun 已提交
4502

4503
@wrap_param_attr_default()
Q
qijun 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4514 4515
                    param_attr=None,
                    trans=False):
4516 4517 4518 4519 4520 4521 4522 4523 4524
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4525
       proj = conv_projection(input=input1,
4526 4527 4528 4529
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4530
    :param input: The input of this layer.
4531 4532 4533 4534 4535 4536 4537 4538 4539
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4540 4541
    :param num_channels: channel of input data.
    :type num_channels: int
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4554
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4555
    :type trans: bool
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4586
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4587 4588 4589 4590 4591
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4592 4593 4594
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4607 4608 4609 4610

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4611

D
dangqingqing 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4629

D
dangqingqing 已提交
4630
    For example,
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4653 4654

    The simply usage is:
D
dangqingqing 已提交
4655 4656 4657 4658 4659 4660 4661 4662

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4663
    :param input: The input of this layer.
D
dangqingqing 已提交
4664 4665
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4666
    :type pad_c: list | None
D
dangqingqing 已提交
4667
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4668
    :type pad_h: list | None
D
dangqingqing 已提交
4669
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4670
    :type pad_w: list | None
D
dangqingqing 已提交
4671 4672
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4673
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4716
@wrap_name_default()
L
luotao1 已提交
4717 4718
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4730 4731 4732 4733
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4734 4735 4736 4737 4738

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4739
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4740

4741
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4742
    :type name: basestring
4743 4744
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4745
    :param b: input layer b.
4746
    :type b: LayerOutput
L
luotao1 已提交
4747 4748
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4749
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4750 4751
    :rtype: LayerOutput
    """
4752 4753
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4754 4755 4756
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4757
        inputs=[a.name, b.name],
Q
qijun 已提交
4758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4759

Q
qijun 已提交
4760 4761
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4762 4763 4764 4765 4766


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4767
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4768
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4769 4770 4771 4772 4773 4774 4775 4776
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4777 4778 4779 4780 4781
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4782
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4783 4784

    In this formular:
4785 4786
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4787 4788
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4789
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4790 4791 4792 4793 4794

    The simple usage is:

    .. code-block:: python

4795
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4796

4797
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4798
    :type name: basestring
4799 4800 4801 4802
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4803
    :param size: the layer dimension.
L
luotao02 已提交
4804
    :type size: int.
R
ranqiu 已提交
4805
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4806 4807
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4808
    :type param_attr: ParameterAttribute
4809 4810 4811 4812
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4813
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4814
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4815
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4816
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4817 4818
    :rtype: LayerOutput
    """
4819
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4820 4821 4822 4823 4824 4825
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4826 4827 4828 4829
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4830 4831 4832 4833 4834 4835


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4836
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4837 4838
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4839
                       select=None,
Q
qijun 已提交
4840 4841
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4842 4843 4844
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4845 4846 4847
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4858
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4859

4860
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4861
    :type name: basestring
R
ranqiu 已提交
4862 4863
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4864 4865
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4866
                   If is None, acts exactly like fc_layer.
4867
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4868 4869
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4870
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4871 4872 4873
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4874 4875 4876 4877
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4878
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4879
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4880
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4881
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4882 4883 4884 4885
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4886
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4887 4888
        param_attr = [param_attr]
    else:
4889
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4890 4891
            assert len(input) == len(param_attr)
        else:
4892
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4893
                logger.fatal(
W
wangmeng28 已提交
4894 4895 4896 4897 4898
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4899 4900
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4901 4902 4903 4904
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4905
    Layer(
Q
qijun 已提交
4906 4907 4908
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4909 4910 4911
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4912
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4913 4914 4915 4916
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4917 4918 4919 4920 4921 4922 4923
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4924 4925 4926


@wrap_name_default()
L
luotao1 已提交
4927 4928
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4939
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4940
    :type input: LayerOutput
4941
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4942
    :type name: basestring
L
luotao1 已提交
4943
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4944
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4945
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4946 4947
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4948
    l = Layer(
Z
zhangjinchao01 已提交
4949 4950 4951
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4952 4953 4954
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4955 4956 4957


@wrap_name_default()
L
luotao1 已提交
4958
@layer_support()
Q
qijun 已提交
4959 4960 4961 4962
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4963
                          layer_attr=None):
Z
zhangjinchao01 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4977
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4978
    :type input: LayerOutput
4979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4980 4981 4982 4983 4984
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4985
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4986
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4988 4989 4990 4991 4992 4993 4994 4995
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4996 4997 4998
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4999 5000 5001


@wrap_name_default()
L
luotao1 已提交
5002
@layer_support()
Q
qijun 已提交
5003
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5004
    """
5005 5006 5007 5008
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5009 5010 5011

    .. math::

5012
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5013

5014 5015 5016 5017 5018
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5019

5020
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5021 5022

    In this formular:
5023 5024 5025 5026 5027 5028
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5029 5030 5031 5032 5033

    The simple usage is:

    .. code-block:: python

5034
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5035 5036
                                       size=elem_dim)

5037 5038 5039 5040
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5041 5042
    :param size: the dimension of this layer.
    :type size: int
5043
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5044
    :type name: basestring
L
luotao1 已提交
5045
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5048 5049
    :rtype: LayerOutput
    """
5050 5051 5052 5053
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5054
            size = vectors.size / weights.size
5055 5056
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5057 5058
    Layer(
        name=name,
5059
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5060
        size=size,
5061
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5062 5063 5064
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5065

5066

5067
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5068

5069

Z
zhangjinchao01 已提交
5070
@wrap_name_default()
L
luotao1 已提交
5071
@layer_support()
Z
zhangjinchao01 已提交
5072 5073 5074 5075 5076 5077 5078
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5079
                       num_channels=None,
L
luotao1 已提交
5080 5081
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5082 5083
    """
    Expand feature map to minibatch matrix.
5084
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5085
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5096
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5097 5098
    convolution neural network, and before recurrent neural network.

5099 5100 5101 5102
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5103
       block_expand = block_expand_layer(input=layer,
5104
                                         num_channels=128,
5105 5106 5107 5108 5109
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5110
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5111
    :type input: LayerOutput
5112
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5113
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5126
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5127
    :type name: None | basestring.
L
luotao1 已提交
5128
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5129
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5130
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5131 5132
    :rtype: LayerOutput
    """
5133 5134 5135
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5153 5154


5155 5156
@wrap_name_default()
@layer_support()
5157
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5158 5159 5160 5161 5162
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5163
    So groups should be larger than 1, and the num of channels should be able
5164 5165
    to devided by groups.

X
xuwei06 已提交
5166 5167 5168 5169 5170 5171 5172 5173
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5174
    Please refer to Paper:
5175 5176 5177 5178
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5179

5180 5181 5182 5183 5184 5185 5186 5187
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5188
    :param input: The input of this layer.
5189 5190 5191
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5192
    :type num_channels: int | None
5193 5194
    :param groups: The group number of input layer.
    :type groups: int
5195
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5196
    :type name: None | basestring.
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5217 5218


Z
zhangjinchao01 已提交
5219
@wrap_name_default()
L
luotao1 已提交
5220
@layer_support()
Q
qijun 已提交
5221 5222 5223 5224 5225
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5226
              layer_attr=None):
Z
zhangjinchao01 已提交
5227 5228 5229 5230 5231
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5232 5233
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5234 5235
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5236 5237 5238 5239 5240 5241 5242 5243

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5244
    The example usage is:
Z
zhangjinchao01 已提交
5245 5246 5247 5248 5249 5250 5251 5252

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5253
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5254 5255 5256
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5257
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5258
    :type size: int
5259
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5260
    :type name: basestring | None
Z
zhangjinchao01 已提交
5261 5262
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5263
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5264
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5265
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5266 5267 5268 5269
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5270 5271 5272 5273 5274
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5275
    Layer(
5276 5277 5278 5279
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5280
        inputs=[input.name, label.name],
Q
qijun 已提交
5281
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5282 5283
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5284

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5296
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5297
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5298 5299 5300 5301 5302 5303 5304
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5305 5306 5307
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5308
    icml2006_GravesFGS06.pdf>`_.
5309 5310 5311

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5312 5313 5314
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5315 5316
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5317
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5318
          'linear' activation is expected instead in the 'input' layer.
5319

C
caoying03 已提交
5320
    The example usage is:
5321 5322 5323 5324 5325 5326 5327 5328 5329

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5330
    :param input: The input of this layer.
5331 5332 5333 5334 5335
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5336
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5337
    :type name: basestring | None
5338 5339 5340 5341 5342
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5343
    :type layer_attr: ExtraLayerAttribute | None
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5366
@wrap_name_default()
5367
@wrap_param_attr_default()
L
luotao1 已提交
5368
@layer_support()
Q
qijun 已提交
5369 5370 5371 5372 5373 5374
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5375
              coeff=1.0,
L
luotao1 已提交
5376
              layer_attr=None):
Z
zhangjinchao01 已提交
5377 5378 5379 5380
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5381
    The example usage is:
Z
zhangjinchao01 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5392
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5393 5394 5395 5396 5397 5398 5399
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5400
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5401
    :type name: None | basestring
5402 5403
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5404
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5405
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5406
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5407 5408 5409 5410 5411
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5412 5413 5414 5415 5416 5417
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5418

Q
qijun 已提交
5419
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5420 5421 5422 5423
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5424 5425 5426 5427
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5428
        coeff=coeff,
Q
qijun 已提交
5429
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5430 5431 5432
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5433 5434 5435 5436
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5437

5438

Z
zhangjinchao01 已提交
5439
@wrap_name_default()
5440
@wrap_param_attr_default()
L
luotao1 已提交
5441
@layer_support()
Q
qijun 已提交
5442 5443 5444 5445 5446
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5447
                       layer_attr=None):
Z
zhangjinchao01 已提交
5448 5449 5450 5451 5452 5453 5454
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5455
    The example usage is:
L
Luo Tao 已提交
5456 5457 5458 5459 5460 5461

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5462 5463 5464 5465 5466 5467 5468 5469
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5470
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5471
    :type name: None | basestring
L
luotao1 已提交
5472
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5473
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5474
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5475 5476 5477 5478 5479 5480
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5481
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5482 5483 5484 5485
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5486 5487 5488 5489
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5490
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5491 5492 5493
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5494 5495 5496 5497
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5498

Q
qijun 已提交
5499

Y
Yu Yang 已提交
5500
@wrap_act_default(act=SigmoidActivation())
5501
@wrap_bias_attr_default(has_bias=True)
5502
@wrap_param_attr_default()
5503 5504
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5505 5506
def nce_layer(input,
              label,
C
caoying03 已提交
5507
              num_classes=None,
Y
Yu Yang 已提交
5508
              act=None,
5509
              param_attr=None,
Q
qijun 已提交
5510 5511 5512 5513 5514 5515
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5516 5517 5518 5519 5520 5521 5522 5523 5524
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5525 5526
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5527 5528
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5529
    :param name: The name of this layer. It is optional.
5530
    :type name: basestring
R
ranqiu 已提交
5531
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5532
    :type input: LayerOutput | list | tuple | collections.Sequence
5533 5534 5535 5536 5537
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5538
    :type num_classes: int
R
ranqiu 已提交
5539
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5540
    :type act: BaseActivation
5541 5542
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5543
    :param num_neg_samples: number of negative samples. Default is 10.
5544
    :type num_neg_samples: int
5545 5546 5547
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5548
    :type neg_distribution: list | tuple | collections.Sequence | None
5549 5550 5551 5552
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
5553
    :type bias_attr: ParameterAttribute | None | bool | Any
5554 5555 5556 5557 5558 5559 5560
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5561 5562 5563 5564 5565 5566 5567 5568
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5569
    assert isinstance(input, collections.Sequence)
5570

5571 5572
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5573 5574
    if num_classes is None:
        num_classes = label.size
5575 5576 5577
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5578
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5579 5580
    if not isinstance(act, BaseActivation):
        raise TypeError()
5581

5582 5583
    ipts_for_layer = []
    parents = []
5584
    for each_input, attr in zip(input, param_attr):
5585
        assert isinstance(each_input, LayerOutput)
5586
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5597
    l = Layer(
5598 5599 5600 5601
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5602
        active_type=act.name,
5603 5604 5605
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5606 5607
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5608 5609 5610 5611 5612
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5613

5614

Z
zhangjinchao01 已提交
5615 5616 5617
"""
following are cost Layers.
"""
5618 5619


Z
zhangjinchao01 已提交
5620
@wrap_name_default()
L
luotao1 已提交
5621
@layer_support()
Q
qijun 已提交
5622 5623 5624 5625 5626 5627 5628
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5629
    """
5630
    A cost Layer for learning to rank using gradient descent. Details can refer
5631 5632
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5633 5634 5635 5636 5637
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5638
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5639

L
luotao02 已提交
5640
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5641

L
luotao02 已提交
5642
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5643 5644 5645 5646 5647 5648 5649 5650

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5651
    The example usage is:
Z
zhangjinchao01 已提交
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5668
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5669
    :type name: None | basestring
Z
zhangjinchao01 已提交
5670 5671
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5672 5673
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5674
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5687 5688 5689 5690 5691 5692
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5693

X
xuwei06 已提交
5694
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5695

5696

Z
zhangjinchao01 已提交
5697
@wrap_name_default()
L
luotao1 已提交
5698
@layer_support()
Q
qijun 已提交
5699 5700 5701 5702 5703 5704
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5705 5706 5707
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5708
    The example usage is:
Z
zhangjinchao01 已提交
5709 5710 5711 5712 5713 5714 5715 5716

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5717
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5718 5719 5720 5721
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5722
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5723 5724 5725 5726 5727 5728
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5729 5730 5731
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5732
    :type max_sort_size: int
R
ranqiu 已提交
5733
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5734
    :type name: None | basestring
L
luotao1 已提交
5735 5736
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5737
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5738 5739
    :rtype: LayerOutput
    """
5740 5741 5742
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5743 5744 5745 5746 5747 5748 5749
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5750

Q
qijun 已提交
5751 5752
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5753

5754

Z
zhangjinchao01 已提交
5755
@wrap_name_default()
L
luotao1 已提交
5756
@layer_support()
5757 5758 5759 5760 5761 5762
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5763 5764 5765
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5766 5767
    The example usage is:

Z
zhangjinchao01 已提交
5768 5769
    .. code-block:: python

X
xuwei06 已提交
5770
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5771
                            label=label_layer)
Z
zhangjinchao01 已提交
5772 5773 5774 5775 5776

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5777
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5778
    :type name: None | basestring.
5779 5780
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5781
    :type coeff: float.
5782 5783 5784 5785
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5786 5787
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5788
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5789 5790 5791
    :rtype: LayerOutput.
    """

5792
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5793 5794 5795
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5796
        inputs=ipts,
Q
qijun 已提交
5797 5798
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5799
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5800

5801

Z
zhangjinchao01 已提交
5802
@wrap_name_default()
L
luotao1 已提交
5803
@layer_support()
Q
qijun 已提交
5804 5805 5806 5807
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5808 5809
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5810 5811
    """
    A loss layer for multi class entropy with selfnorm.
5812
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5813

C
caoying03 已提交
5814 5815
    The example usage is:

Z
zhangjinchao01 已提交
5816 5817
    .. code-block:: python

X
xuwei06 已提交
5818
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5819
                                          label=label_layer)
Z
zhangjinchao01 已提交
5820 5821 5822 5823 5824

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5825
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5826
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5827 5828 5829 5830
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5831 5832
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5833
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5834 5835
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5836 5837 5838 5839 5840 5841 5842
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5843

Q
qijun 已提交
5844 5845 5846 5847 5848
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5849

5850

X
xuwei06 已提交
5851 5852 5853 5854 5855 5856
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5857 5858
    The example usage is:

X
xuwei06 已提交
5859 5860
    .. code-block:: python

L
Luo Tao 已提交
5861
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5862

R
ranqiu 已提交
5863
    :param input: The input of this layer.
X
xuwei06 已提交
5864
    :type input: LayerOutput.
R
ranqiu 已提交
5865
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5866
    :type name: None | basestring.
X
xuwei06 已提交
5867 5868 5869 5870 5871
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5872
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5873 5874 5875 5876 5877
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5878

Q
qijun 已提交
5879
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5880 5881


Z
zhangjinchao01 已提交
5882
@wrap_name_default()
L
luotao1 已提交
5883
@layer_support()
L
Luo Tao 已提交
5884 5885 5886 5887 5888 5889
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5890
    """
5891 5892 5893
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5894 5895 5896 5897 5898
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5899

C
caoying03 已提交
5900 5901
    The example usage is:

Z
zhangjinchao01 已提交
5902 5903
    .. code-block:: python

L
Luo Tao 已提交
5904 5905 5906 5907 5908 5909
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5910
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5911
    :type name: None | basestring.
L
Luo Tao 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5933
@wrap_name_default()
L
luotao1 已提交
5934
@layer_support()
5935 5936 5937 5938 5939
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5940
    """
5941 5942 5943
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5944 5945 5946
    loss is defined as:

    .. math:
5947
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5948
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5949

C
caoying03 已提交
5950 5951
    The example usage is:

Z
zhangjinchao01 已提交
5952 5953
    .. code-block:: python

5954
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5955 5956 5957 5958 5959

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5960
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5961
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5962 5963
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5964 5965
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5966
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5967 5968
    :rtype: LayerOutput.
    """
5969 5970 5971
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5972 5973
    Layer(
        name=name,
5974
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5975 5976 5977
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5978 5979
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5980

5981

Z
zhangjinchao01 已提交
5982
@wrap_name_default()
L
luotao1 已提交
5983
@layer_support()
Q
qijun 已提交
5984 5985 5986 5987
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5988
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5989 5990 5991
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5992 5993
    The example usage is:

Z
zhangjinchao01 已提交
5994 5995
    .. code-block:: python

X
xuwei06 已提交
5996
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5997
                                               label=label_layer)
Z
zhangjinchao01 已提交
5998 5999 6000 6001 6002

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6003
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6004
    :type name: None | basestring
Z
zhangjinchao01 已提交
6005 6006
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
6007 6008
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6009
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6010 6011 6012
    :rtype: LayerOutput
    """

6013 6014
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6015 6016 6017 6018
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6031 6032


C
caoying03 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6055 6056
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6057
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6058
    """
C
caoying03 已提交
6059 6060 6061
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6062

C
caoying03 已提交
6063 6064 6065 6066 6067
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6068

C
caoying03 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6087
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6108
    :param input: Input beams for this layer.
C
caoying03 已提交
6109
    :type input: BeamInput
R
ranqiu 已提交
6110
    :param name: The name of this layer.
C
caoying03 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6137 6138 6139
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6140 6141
@wrap_name_default()
@layer_support()
6142
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6143 6144
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6145
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6155
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6156

D
dangqingqing 已提交
6157 6158 6159
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6160 6161
    The example usage is:

D
dangqingqing 已提交
6162 6163
    .. code-block:: python

6164 6165
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6166 6167 6168 6169 6170

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6171
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6172
    :type name: None | basestring
6173 6174
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6188
        coeff=coeff,
D
dangqingqing 已提交
6189 6190 6191
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6211 6212
    The example usage is:

W
wwhu 已提交
6213 6214 6215 6216 6217 6218
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6219
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6245 6246


6247 6248 6249 6250
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6251 6252 6253 6254 6255 6256
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6257
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6258
    :type name: basestring
R
ranqiu 已提交
6259
    :param input: The input of this layer.
R
ranqiu 已提交
6260 6261 6262 6263 6264
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6265 6266 6267 6268 6269 6270 6271
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6272 6273


D
dangqingqing 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6287
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6288 6289 6290 6291 6292 6293 6294
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6295
    efficient manner to improve unidirectional RNNs.
6296

R
ranqiu 已提交
6297
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6298 6299 6300 6301
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6302

D
dangqingqing 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6318
    :param input: The input of this layer.
D
dangqingqing 已提交
6319 6320 6321 6322
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6323
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6324 6325
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6326
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6327 6328
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
6329
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6346 6347


6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6367 6368 6369 6370 6371 6372
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6373
    :param name: The name of this layer. It is optional.
6374
    :type name: basestring
R
ranqiu 已提交
6375
    :param input: The input of this layer.
6376 6377
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6378 6379 6380 6381 6382 6383

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6384
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6385
    :type param_attr: ParameterAttribute | None
6386
    :param layer_attr: Extra layer configurations. Default is None.
R
ranqiu 已提交
6387
    :type layer_attr: ExtraLayerAttribute | None
6388 6389 6390 6391
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6392
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6393
    assert isinstance(param_attr, ParameterAttribute)
6394 6395 6396

    l = Layer(
        name=name,
C
caoying03 已提交
6397
        type=LayerType.PRELU,
C
caoying03 已提交
6398
        inputs=Input(input.name, **param_attr.attr),
6399 6400 6401 6402 6403 6404 6405
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6406 6407


6408
@wrap_name_default()
C
caoying03 已提交
6409
@layer_support(ERROR_CLIPPING, DROPOUT)
6410 6411 6412 6413 6414 6415 6416
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6417 6418
                     gate_bias_attr=True,
                     inproj_attr=None,
6419 6420 6421 6422 6423 6424 6425
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6426
    product between :match:`X'` and :math:`\sigma` is finally returned.
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6440
    :param input: The input of this layer.
6441 6442 6443
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
R
ranqiu 已提交
6444
    :param act: Activation type of the projected input. LinearActivation is the default.
6445
    :type act: BaseActivation
6446
    :param name: The name of this layer. It is optional.
6447 6448 6449 6450
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
R
ranqiu 已提交
6451
    :type gate_attr: ExtraLayerAttribute | None
6452 6453
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
R
ranqiu 已提交
6454
    :type gate_param_attr: ParameterAttribute | None
C
caoying03 已提交
6455
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
R
ranqiu 已提交
6456
    :type gate_bias_attr: ParameterAttribute | None
C
caoying03 已提交
6457 6458 6459
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6460
    :type inproj_attr: ExtraLayerAttribute | None
6461 6462
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
R
ranqiu 已提交
6463
    :type inproj_param_attr: ParameterAttribute | None
6464 6465
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
R
ranqiu 已提交
6466
    :type inproj_bias_attr: ParameterAttribute | None
6467 6468 6469
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6470
    :type layer_attr: ExtraLayerAttribute | None
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6483
        layer_attr=inproj_attr,
6484 6485 6486 6487 6488 6489 6490 6491 6492
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6493
        param_attr=gate_param_attr,
6494 6495 6496 6497 6498
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6499 6500


6501
@layer_support()
6502
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6503 6504
def switch_order_layer(input,
                       name=None,
6505
                       reshape_axis=None,
W
wanghaoshuang 已提交
6506 6507
                       act=None,
                       layer_attr=None):
6508
    """
6509
    This layer switch dimension order of image input.
6510 6511
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6512 6513 6514 6515

    The example usage is:

    .. code-block:: python
6516 6517
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6518
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6519

R
ranqiu 已提交
6520
    :param input: The input of this layer.
6521
    :type input: LayerOutput
6522
    :param name: The name of this layer. It is optional.
6523
    :type name: basestring
R
ranqiu 已提交
6524 6525
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6526 6527 6528
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6529
    assert isinstance(input, LayerOutput)
6530 6531 6532 6533 6534
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6535 6536
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6537
        inputs=input.name,
6538 6539
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6540
        active_type=act.name,
6541 6542 6543
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6544
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6545
        activation=act,
6546 6547
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6548 6549


6550 6551
@wrap_name_default()
@layer_support()
6552
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6553
    """
R
ranqiu 已提交
6554
    This layer crops images by offset and shape. User can set crop shape by
6555
    args 'shape' explicitly or by reference input layer.
6556

6557 6558 6559
    The example usage is:

    .. code-block:: python
W
whs 已提交
6560
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6561

R
ranqiu 已提交
6562 6563 6564 6565
    :param input: The input of this layer. If two inputs are given, the second input
                  will be regarded as reference input.
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6566
    :type offset: Sequence
6567 6568 6569 6570 6571 6572 6573
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6574
    :type shape: Sequence | None
6575
    :param name: The name of this layer. It is optional.
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6597 6598


C
caoying03 已提交
6599 6600
@wrap_name_default()
@layer_support()
6601
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6602
    """
6603
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6604
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6605

C
caoying03 已提交
6606 6607 6608
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6609 6610 6611 6612

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6613

R
ranqiu 已提交
6614
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6615

C
caoying03 已提交
6616

R
ranqiu 已提交
6617
    :param input: The input of this layer. It is a nested sequence.
6618
    :type input: LayerOutput
R
ranqiu 已提交
6619
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6620
    :type input: LayerOutput
6621
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6622 6623 6624 6625
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6626

6627 6628 6629 6630 6631 6632 6633
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6634
    l = Layer(
6635 6636
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6637 6638 6639 6640 6641 6642 6643
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6644 6645


G
guosheng 已提交
6646
@wrap_name_default("clip")
6647
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6657
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6658

6659
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6660
    :type name: basestring
R
ranqiu 已提交
6661
    :param input: The input of this layer.
G
guosheng 已提交
6662
    :type input: LayerOutput.
6663 6664 6665 6666
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6667 6668
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6669 6670 6671 6672 6673
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6674 6675
        min=min,
        max=max)
G
guosheng 已提交
6676 6677
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6678 6679


6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6704
    :param name: The name of this layer. It is optional.
6705
    :type name: basestring
R
ranqiu 已提交
6706
    :param input: The input of this layer, which should be a sequence.
6707 6708
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
R
ranqiu 已提交
6709
    :type starts: LayerOutput | None
6710
    :param ends: end indices to slice the input sequence.
R
ranqiu 已提交
6711
    :type ends: LayerOutput | None
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6744 6745


6746 6747
@wrap_name_default()
@layer_support()
6748
def kmax_seq_score_layer(input, name=None, beam_size=1):
6749
    """
C
caoying03 已提交
6750
    This layer accepts one input which are scores over a sequence or a nested
6751 6752 6753 6754
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6755
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6756 6757


6758
    :param name: The name of this layer. It is optional.
6759
    :type name: basestring
R
ranqiu 已提交
6760
    :param input: The input of this layer. It stores scores over a sequence or a nested
6761
        sequence and its size must be 1.
R
ranqiu 已提交
6762
    :type input: LayerOutput
R
ranqiu 已提交
6763
    :param beam_size: sequence indices with top beam_size scores are returned.
6764 6765 6766 6767
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6768
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6769
                                            "accepts only one input.")
6770
    assert input.size == 1, (
6771
        "input of kmax_seq_score_layer is a score "
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6782 6783


6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6810
        conv = img_conv3d_layer(input=data, filter_size=1,
6811 6812 6813 6814 6815
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6816
    :param name: The name of this layer. It is optional.
6817
    :type name: basestring
R
ranqiu 已提交
6818
    :param input: The input of this layer.
6819
    :type input: LayerOutput
C
chengduoZH 已提交
6820
    :param filter_size: The x dimension of a filter kernel. Or input a list.
R
ranqiu 已提交
6821
    :type filter_size: int | tuple | list
6822
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
6823
    :param act: Activation type. ReluActivation is the default.
6824 6825 6826 6827 6828
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
6829
    :type stride: int | tuple | list
6830 6831
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
6832
    :type padding: int | tuple | list
6833 6834
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
R
ranqiu 已提交
6835
    :type bias_attr: ParameterAttribute | None | bool | Any
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6859 6860 6861 6862 6863 6864
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6865

C
chengduoZH 已提交
6866 6867 6868 6869 6870 6871
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6872

C
chengduoZH 已提交
6873 6874 6875 6876 6877 6878
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6925 6926


G
guosheng 已提交
6927 6928 6929 6930 6931
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6932 6933
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6934 6935
    adds a bias to it.

X
xuwei06 已提交
6936
    This layer is very like the SlopeInterceptLayer, except the scale and
6937 6938
    bias are trainable.

G
guosheng 已提交
6939 6940 6941 6942 6943 6944 6945 6946
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6947
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6948
    :type name: basestring
R
ranqiu 已提交
6949 6950
    :param input: The input of this layer.
    :type input: LayerOutput
G
guosheng 已提交
6951 6952
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6953 6954 6955 6956
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6957
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6968 6969 6970 6971 6972 6973 6974 6975 6976


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6977
    :param input: The input of this layer.
6978 6979 6980
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6981
    :param size: The resized output dimension of this layer.
6982 6983 6984 6985 6986 6987
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
    :param offsets: offset indices to slice the input sequence, which should be
                    sequence type.
    :type offsets: LayerOutput
    :param sizes: sizes of the sub-sequences, which should be sequence type.
    :type sizes: LayerOutput
    :param act: Layer activation, default is LinearActivation
    :type act: BaseActivation.
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089


@wrap_name_default('mul_value')
def mul_value_layer(input, indices, value, name=None):
    """
    Given an image or feature map with CHW information, mul_value_layer can be
    used to multiply a real value to values of a sub continuous region. You can
    provide start and end indices of CHW for each instance. Please notice that
    all start indices are counting from 1. The shape of indices should be
    [batch_size, 6] and the layout for each row is [C_Start, C_End, H_Start,
    H_End, W_Start, W_End].

    .. code-block:: python

        mul_value = mul_value_layer(input=input, indices=indices, value=value)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of mul_value_layer, must be a PaddlePaddle layer.')
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
        type=LayerType.MUL_VALUE_LAYER,
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
        LayerType.MUL_VALUE_LAYER,
        parents=[input, indices],
        size=input.size)