device_context.h 24.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88 89 90 91
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
92 93
#endif  // PADDLE_WITH_CUDA

94 95 96 97
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
98
  NPU = 3,
99 100 101 102 103
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
104
constexpr DeviceType kNPU = DeviceType::NPU;
105

Q
QI JUN 已提交
106 107
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
108
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
109
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
110

111
  virtual void Wait() const {}
Q
QI JUN 已提交
112 113
};

Q
qijun 已提交
114 115
class CPUDeviceContext : public DeviceContext {
 public:
116
  CPUDeviceContext();
Q
qijun 已提交
117
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
118

119
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
120

L
liaogang 已提交
121
  Place GetPlace() const override;
Y
Yu Yang 已提交
122

Q
qijun 已提交
123
 private:
D
dzhwinter 已提交
124
  CPUPlace place_;
Q
qijun 已提交
125
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
126 127
};

Y
Yang Yu 已提交
128 129 130 131 132 133 134 135
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

136 137 138 139 140 141 142 143 144 145 146 147 148
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

149
#ifdef PADDLE_WITH_XPU_BKCL
150
  /*! \brief  Return bkcl context. */
151 152 153 154 155 156
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

157 158 159
 private:
  XPUPlace place_;
  xpu::Context* context_;
160 161 162
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
163 164 165 166 167 168 169 170 171 172 173 174 175

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

176 177 178 179 180 181 182 183
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

#ifdef PADDLE_WITH_ASCEND_HCCL
  /*! \brief  Return bkcl context. */
  HCCLContext_t hccl_context() const { return hccl_context_; }

  /*! \brief  Set bkcl context. */
  void set_hccl_context(HCCLContext_t context) { hccl_context_ = context; }
#endif

 private:
  NPUPlace place_;
  aclrtContext context_;
#ifdef PADDLE_WITH_ASCEND_HCCL
  HCCLContext_t hccl_context_;
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
222
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
223
class EigenCudaStreamDevice;
S
sneaxiy 已提交
224

225 226 227 228 229
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
230
      const stream::Priority& priority = stream::Priority::kNormal);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

246
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
247

248 249 250
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
251
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
252
#endif
253

254
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
255 256 257
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
258
#endif
G
Guo Sheng 已提交
259

260 261 262 263 264 265 266 267 268 269 270
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
271 272 273 274 275
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

295 296 297 298 299
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
300 301 302 303 304 305 306
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
307 308 309 310 311
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
312 313
    }
  }
314
#endif
315 316 317

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
          (miopen_major * 1000 + miopen_minor * 100 + miopen_patch) / 100;
      auto compile_miopen_version = MIOPEN_VERSION / 100;
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
            << compile_miopen_version / 10 << "." << compile_miopen_version % 10
            << ", but MIOPEN version in your machine is "
            << local_miopen_version / 10 << "." << local_miopen_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
340 341 342 343 344 345 346 347 348 349 350 351 352
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
353 354
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
355
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
356
#endif
357 358 359 360 361
    } else {
      cudnn_handle_ = nullptr;
    }
  }

362
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
363
  void InitCuSolverContext() {
364 365
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
366 367
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
368
#endif
G
Guo Sheng 已提交
369

370 371
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
372 373 374
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
375
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
376
#endif
377 378 379 380 381 382 383
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
384
    cublas_tf32_tensor_core_handle_.reset();
385 386
  }

387
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
388 389 390 391 392 393
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
394
#endif
G
Guo Sheng 已提交
395

396 397 398 399
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
400 401 402
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
403
  cudnnHandle_t cudnn_handle_;
404
#endif
405 406
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
407
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
408
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
409
  cusolverDnHandle_t cusolver_dn_handle_;
410
#endif
411 412 413
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

414
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
415
 public:
D
dzhwinter 已提交
416
  explicit CUDADeviceContext(CUDAPlace place);
417
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
418

419
  /*! \brief  Wait for all operations completion in the stream. */
420
  void Wait() const override;
Q
QI JUN 已提交
421

422
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
423
  Place GetPlace() const override;
424

K
Kexin Zhao 已提交
425
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
426 427
  int GetComputeCapability() const;

428 429 430
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

431 432 433 434 435 436
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

437 438 439
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

440 441 442
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

443 444 445
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
446
    return context()->CublasCall(callback);
447 448 449 450 451 452 453 454 455
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
456
    return context()->TensorCoreCublasCallIfAvailable(callback);
457
  }
S
sneaxiy 已提交
458

459 460 461 462
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
463
  cudnnHandle_t cudnn_handle() const;
464
#endif
465

466 467 468 469
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
470
  cublasHandle_t cublas_handle() const;
471
#endif
472

S
sneaxiy 已提交
473 474 475 476 477 478 479 480 481
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

482
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
483
  cusolverDnHandle_t cusolver_dn_handle() const;
484
#endif
G
Guo Sheng 已提交
485

Q
init  
qijun 已提交
486
  /*! \brief  Return cuda stream in the device context. */
487
  gpuStream_t stream() const;
Q
QI JUN 已提交
488

489
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
490 491 492 493 494
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
495
#endif
Q
qingqing01 已提交
496

Y
Yu Yang 已提交
497
  template <typename Callback>
498
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
499
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
500 501
  }

S
sneaxiy 已提交
502 503
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
504 505 506 507 508
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
509 510
  }

511
  void ResetDefaultContext(const stream::Priority& priority) {
512 513 514
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

515
  void ResetThreadContext(const stream::Priority& priority) {
516 517 518 519 520 521 522 523 524 525
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
526

Q
QI JUN 已提交
527
 private:
D
dzhwinter 已提交
528
  CUDAPlace place_;
529
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
530

531 532 533 534 535 536
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
537

538 539
  mutable std::mutex cudnn_handle_mtx_;

540
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
541 542 543 544 545 546
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
547
#endif
Q
qingqing01 已提交
548

C
chengduo 已提交
549 550 551 552 553
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
554
  int max_threads_per_block_;
555
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
556

557
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
558
};
Q
qijun 已提交
559

560 561
class CudnnWorkspaceHandle {
 public:
562 563
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
564 565 566 567 568 569 570 571

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
572 573 574 575
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
576 577 578 579 580 581 582 583 584 585 586 587 588
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

589
  void ReallocWorkspace(size_t required_workspace_bytes);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
606
  std::mutex* mtx_;
607 608
};

Y
Yang Yu 已提交
609 610
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
611
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
612 613
};

C
chengduoZH 已提交
614
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
615 616 617 618 619 620
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
621

C
chengduoZH 已提交
622 623 624 625 626 627 628 629 630 631 632
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
633
#endif
Q
qijun 已提交
634

T
tensor-tang 已提交
635
#ifdef PADDLE_WITH_MKLDNN
636 637 638 639 640 641

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
642
    bool said_once = false;
643 644 645 646 647 648 649 650 651 652 653
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
654 655 656
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
657 658
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
659 660

    Body();
661
    ~Body();
662 663 664 665 666 667
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
668
    void log_lib_version(void);
669 670
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
671 672 673 674
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
690

T
tensor-tang 已提交
691 692
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
710 711 712
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
713
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
714

715
  // Remove all entries from the blob map
716 717 718 719
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
720

721 722 723
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

724 725
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
726

727 728 729
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

730 731
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
732

733 734 735 736
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
737
 private:
738 739
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
740
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
741 742 743
};
#endif

D
dzhwinter 已提交
744 745 746 747 748
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
749
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
750 751 752
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
753 754 755 756
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
757
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
758 759 760 761 762 763
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

764 765
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
766
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
767
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
768

Y
Yang Yu 已提交
769 770 771 772 773 774 775
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

776 777
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
778 779
 private:
  static DeviceContextPool* pool;
780 781
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
782 783 784
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
785 786
}  // namespace platform
}  // namespace paddle