control_flow.py 139.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
G
guofei 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case',
    'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
    helper.append_op(
        type='select_output',
        inputs={'X': input,
                'Mask': mask},
        outputs={'Out': outputs})
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        input_dtype = inputs[0].dtype
85
        input_shape = inputs[0].shape
86
        input_type = inputs[0].type
87 88
    else:
        input_dtype = inputs.dtype
89
        input_shape = inputs.shape
90 91 92 93
        input_type = inputs.type

    out = helper.create_variable(
        dtype=input_dtype, shape=input_shape, type=input_type)
94 95 96 97 98 99 100 101
    helper.append_op(
        type='select_input',
        inputs={'X': inputs,
                'Mask': mask},
        outputs={'Out': out})
    return out


102
def split_lod_tensor(input, mask, level=0):
103 104 105 106
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
107 108
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
109 110 111 112 113

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
114
        level(int): The specific lod level to split.
115 116

    Returns:
Q
qiaolongfei 已提交
117 118 119 120
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
121 122 123 124

    Examples:
        .. code-block:: python

125
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
126
          x = fluid.layers.data(name='x', shape=[1])
127 128
          x.persistable = True

Q
qiaolongfei 已提交
129
          y = fluid.layers.data(name='y', shape=[1])
130 131
          y.persistable = True

Q
qiaolongfei 已提交
132
          out_true, out_false = fluid.layers.split_lod_tensor(
133
                input=x, mask=y, level=level)
134

135
    """
136
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
137 138
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
139 140 141 142 143 144 145 146 147 148 149 150
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


151
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
152 153 154 155 156
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
157 158 159
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
160 161 162 163 164 165 166

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
167
        level(int): The specific lod level to merge.
168 169 170 171 172 173 174

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

175
          import paddle.fluid as fluid
176 177 178 179 180 181 182 183 184 185 186 187
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
188
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
189
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
190 191 192 193 194 195 196 197 198 199 200
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
201 202 203
def Print(input,
          first_n=-1,
          message=None,
204
          summarize=20,
Y
Yan Chunwei 已提交
205 206 207
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
208 209
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217 218 219
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
220
        input (Variable): A Tensor to print.
221
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
222
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
223 224
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
225 226 227 228
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
229
        print_phase (str): Which phase to displace, including 'forward',
230 231 232
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
233 234

    Returns:
235
        Variable: Output tensor.
Y
Yan Chunwei 已提交
236

237 238 239 240
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
241

Y
Yan Chunwei 已提交
242 243
    Examples:
        .. code-block:: python
244 245 246
           
           import paddle.fluid as fluid
           
247 248 249 250 251 252
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
253

254 255 256
    Output at runtime:
        .. code-block:: bash 
           
257
           The content of input layer:     The place is:CPUPlace
258 259 260 261 262
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
Y
Yan Chunwei 已提交
263
    '''
264 265 266
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
267

268 269
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
270 271
    helper.append_op(
        type='print',
Y
yangyaming 已提交
272
        inputs={'In': input},
273
        outputs={'Out': output},
Y
Yan Chunwei 已提交
274 275 276 277 278 279 280 281
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
282
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
283
        })
284
    return output
Y
Yan Chunwei 已提交
285 286


Y
Yu Yang 已提交
287 288
class BlockGuard(object):
    """
289 290 291 292
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
293 294
    """

295 296
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
297
            raise TypeError("BlockGuard takes a program")
298
        self.main_program = main_program
Y
Yu Yang 已提交
299 300

    def __enter__(self):
W
Wu Yi 已提交
301
        self.main_program._create_block()
Y
Yu Yang 已提交
302 303

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
304
        self.main_program._rollback()
Y
Yu Yang 已提交
305 306 307 308 309
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
310 311 312 313 314
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
315 316
    """

Y
Yu Yang 已提交
317
    def __init__(self, rnn):
X
Xin Pan 已提交
318
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
319
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
320
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
321 322 323 324
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
325
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
326 327

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
328 329
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
330
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
331
        self.rnn._complete_op()
Y
Yang Yang 已提交
332 333
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
334 335 336 337


class StaticRNNMemoryLink(object):
    """
338 339 340 341
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
342 343 344 345 346 347 348 349 350


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
351 352 353 354 355 356 357 358 359
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
360 361 362
    """
    StaticRNN class.

363 364 365 366 367 368 369
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
370 371

    Examples:
372 373 374 375 376 377
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
378 379
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
380 381 382 383 384
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
385
            # transform batch size to dim 1
386 387 388 389
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
390
                # mark created x_emb as input, each step process a word
391
                word = rnn.step_input(x_emb)
392
                # create prev memory parameter, batch size comes from word
393 394
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
395 396 397
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
398
                rnn.step_output(hidden)
399
            # get StaticrNN final output
400
            result = rnn()
C
chengduo 已提交
401

402
    """
Y
Yu Yang 已提交
403 404 405 406
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

407 408
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
409 410 411 412 413 414 415 416
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
417
        """
418 419
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
420
        """
Y
Yang Yang 已提交
421
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
422 423 424 425 426

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

427 428 429 430 431 432 433
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
434
        """
C
chengduo 已提交
435 436 437
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
438 439
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
440

441
        Args:
442
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
443 444
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
445 446 447 448 449 450 451
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
452 453

        Returns:
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
485 486
            .. code-block:: python

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

510
        """
Y
Yu Yang 已提交
511 512
        self._assert_in_rnn_block_('memory')
        if init is None:
513
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
514
                raise ValueError(
515
                    "if init is None, memory at least need shape and batch_ref")
516
            parent_block = self._parent_block()
517
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
518
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
519
            boot_var = parent_block.create_var(
520 521
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
522
                dtype=batch_ref.dtype,
523
                persistable=False)
Y
Yu Yang 已提交
524 525

            parent_block.append_op(
526 527
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
528 529 530
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
531
                    'shape': boot_var.shape,
F
fengjiayi 已提交
532
                    'dtype': boot_var.dtype,
533 534
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
535 536 537 538 539
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
540 541
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
542
                dtype=init.dtype,
Y
Yu Yang 已提交
543 544 545 546 547 548
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
549 550 551 552 553 554 555 556
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
586
        """
Y
Yu Yang 已提交
587 588 589 590
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
591
            self.seq_len = x.shape[0]
592
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
593 594 595
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
596
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
597 598 599 600
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
601 602 603 604 605 606 607 608
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
640
        """
Y
Yu Yang 已提交
641 642 643 644
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
645
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
646 647 648 649
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
650
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
651

652
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
653 654
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
655
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
656 657 658 659

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
660 661 662 663
        """
        Mark the StaticRNN output variables.

        Args:
664
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
665 666 667

        Returns:
            None
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
699
        """
Y
Yu Yang 已提交
700 701 702 703
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
704
        """
705
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
706 707 708

        Args:
            mem(Variable): the memory variable.
709
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
710
                           var and mem should have same dims and data type.
C
chengduo 已提交
711 712 713

        Returns:
            None
714

C
chengduo 已提交
715
        """
Y
Yu Yang 已提交
716 717 718 719
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

720
    def _parent_block(self):
721
        prog = self.helper.main_program
Y
Yu Yang 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

737
    def _complete_op(self):
738 739
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
740
        parent_block = self._parent_block()
Y
Yu Yang 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
755 756 757
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
758 759 760 761 762 763 764 765
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

766
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
767 768 769 770 771 772 773

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
774
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
775 776 777
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
778
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
779 780
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
781 782
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
783 784
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
785 786
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
787 788 789 790
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
791
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
805
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
806 807
                'ex_states': pre_memories,
                'states': memories,
808
                'sub_block': rnn_block
Y
Yu Yang 已提交
809
            })
Y
Yu Yang 已提交
810 811


Y
Yang Yang(Tony) 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
827
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
828 829 830 831
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
832
    """
833
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
834

835 836 837 838
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

X
Xin Pan 已提交
839
    Args:
840
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
841
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
842
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
843 844 845

    Examples:
          .. code-block:: python
846 847
            
            import paddle.fluid as fluid
848 849 850 851 852
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
853

854
            cond = fluid.layers.less_than(x=i, y=loop_len)              
855
            while_op = fluid.layers.While(cond=cond)
856
            with while_op.block():  
857
                i = fluid.layers.increment(x=i, value=1, in_place=True)
858 859 860 861 862 863 864
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
865 866
    """

Y
Yang Yang(Tony) 已提交
867 868 869 870
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
871
    def __init__(self, cond, is_test=False, name=None):
872
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
873 874 875 876
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
877
        if cond.dtype != core.VarDesc.VarType.BOOL:
878
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
879
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
880 881 882
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
883
        self.cond_var = cond
C
chengduo 已提交
884
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
885 886 887 888

    def block(self):
        return WhileGuard(self)

889
    def _complete(self):
Y
Yang Yang(Tony) 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
909 910 911
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
912 913 914 915 916 917 918

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
919 920 921 922
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
923 924 925 926
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
927 928
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
929 930


G
guofei 已提交
931
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
932 933 934 935
    """
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

    Args:
936 937 938 939 940
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
941
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
942 943 944 945
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
    
    Returns:
946
        A list or tuple of tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
947 948 949 950 951 952 953 954 955 956 957 958
    
    Returen type:
        list(Variable)|tuple(Variable).

    Raises:
        TypeError: If the type of ``cond`` is not callable.
        TypeError: If the type of ``body`` is not callable.
        TypeError: If the type of ``loop_vars`` is not list or tuple.
        TypeError: If the type of ``cond`` returns is not Variable.
        TypeError: If the type of ``cond`` returns is not a boolean variable.
        TypeError: If the shape of ``cond`` returns is not equals 1.
        ValueError: If the ``var_loops`` is empty.
959
        ValueError: If the length or type of ``body`` returns is not same as ``loop_vars``.
G
guofei 已提交
960 961 962 963 964 965 966

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

967 968
            def cond(i, ten):
                return i < ten
G
guofei 已提交
969

970 971 972
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
973 974 975 976 977 978

            main_program = fluid.default_main_program()
            startup_program = fluid.default_startup_program()
            with fluid.program_guard(main_program, startup_program):
                i = layers.fill_constant(shape=[1], dtype='int64', value=0)     # loop counter
                ten = layers.fill_constant(shape=[1], dtype='int64', value=10)  # loop length
979
                i, ten = layers.while_loop(cond, body, [i, ten])
G
guofei 已提交
980 981
                
                exe = fluid.Executor(fluid.CPUPlace())
982
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
    if not isinstance(loop_vars, (list, tuple)):
        raise TypeError("loop_vars in while_loop should be a list or tuple")
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
    if not isinstance(pre_cond, Variable):
        raise TypeError("cond in while_loop should return a variable")
    if pre_cond.dtype != core.VarDesc.VarType.BOOL:
        raise TypeError("cond in while_loop should return a boolean variable")
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
            "the shape of the variable returned by cond should be [],"
            "but given shape as {0}.".format(list(pre_cond.shape)))

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    if in_dygraph_mode():
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
            loop_vars = output_vars
        return loop_vars

G
guofei 已提交
1020
    while_loop_block = While(pre_cond, is_test, name)
1021
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1022
    with while_loop_block.block():
1023 1024 1025 1026 1027 1028 1029 1030 1031
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1032 1033
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1034 1035 1036
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1037
            raise ValueError("body in while_loop should return the same arity "
1038 1039
                             "(length and structure) as loop_vars: {0}".format(
                                 e))
1040
        now_cond = cond(*output_vars)
1041
        map_structure(assign, output_vars, loop_vars)
G
guofei 已提交
1042 1043 1044 1045
        assign(now_cond, pre_cond)
    return loop_vars


1046
def lod_rank_table(x, level=0):
1047 1048
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1049 1050
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1051
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1052
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1053 1054
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1055 1056 1057 1058

        .. code-block:: text

            x is a LoDTensor:
1059 1060
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1061 1062
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1063 1064 1065
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1066

Y
yangyaming 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1076 1077 1078 1079

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1080 1081
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1082 1083 1084 1085 1086 1087 1088

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1089
            import paddle.fluid as fluid
Y
yangyaming 已提交
1090
            x = fluid.layers.data(name='x', shape=[10],
1091
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1092
            out = layers.lod_rank_table(x=x, level=0)
1093
    """
Y
Yu Yang 已提交
1094 1095 1096
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
1097
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
1098 1099 1100 1101 1102 1103
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1104 1105


Y
yuyang18 已提交
1106
@templatedoc()
1107
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1108 1109 1110 1111 1112 1113 1114 1115
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1116 1117

    Args:
Y
yuyang18 已提交
1118
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1119 1120

    Returns:
Y
yuyang18 已提交
1121
        ${out_comment}.
F
fengjiayi 已提交
1122 1123
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1124
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
1125 1126 1127 1128 1129 1130 1131
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


1132
def lod_tensor_to_array(x, table):
1133
    """
F
fengjiayi 已提交
1134 1135
    Convert a LoDTensor to a LoDTensorArray.

1136 1137 1138 1139 1140
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1141
    Users should not use it directly.
1142 1143

    Args:
F
fengjiayi 已提交
1144
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1145 1146
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1147
                                descending order. It is generally generated
F
fengjiayi 已提交
1148
                                by `layers.lod_rank_table()` API.
1149 1150

    Returns:
F
fengjiayi 已提交
1151
        Variable: The LoDTensorArray that has been converted from the input tensor.
1152 1153 1154 1155

    Examples:
        .. code-block:: python

1156
          import paddle.fluid as fluid
1157 1158 1159
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1160
    """
1161 1162
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1163
        name=unique_name.generate("lod_tensor_to_array"),
1164
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1165
        dtype=x.dtype)
1166 1167 1168 1169 1170 1171 1172 1173
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1174
def array_to_lod_tensor(x, table):
1175
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1176 1177

    Args:
1178
        x (Variable|list): The lod tensor array to be converted to a tensor.
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1190
          import paddle.fluid as fluid
1191 1192 1193 1194
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1195
    """
1196
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1197
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1198 1199 1200 1201 1202 1203 1204 1205
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1206
def increment(x, value=1.0, in_place=True):
1207
    """
1208 1209
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1210

1211
    Parameters:
T
tianshuo78520a 已提交
1212
        x (Variable): A tensor that must always contain only one element, its data type supports
1213 1214 1215
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1216 1217

    Returns:
1218
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1219 1220 1221 1222

    Examples:
        .. code-block:: python

1223
          import paddle.fluid as fluid
1224 1225
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1226
    """
Y
Yu Yang 已提交
1227
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1228
    if not in_place:
X
Xin Pan 已提交
1229
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1230 1231
    else:
        out = x
Y
Yu Yang 已提交
1232 1233 1234
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1235
        outputs={'Out': [out]},
1236
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1237
    return out
Y
Yu Yang 已提交
1238 1239


1240
def array_write(x, i, array=None):
1241
    """
1242 1243 1244 1245
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1246 1247

    Args:
1248 1249 1250 1251 1252 1253 1254
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1255

1256
    Returns:
1257
        Variable: The input ``array`` after ``x`` is written into.
1258 1259

    Examples:
D
dzhwinter 已提交
1260
        .. code-block:: python
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1289
    """
Y
Yu Yang 已提交
1290 1291 1292 1293 1294
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1295
            dtype=x.dtype)
Y
Yu Yang 已提交
1296 1297 1298 1299 1300 1301 1302 1303
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1304
def create_array(dtype):
1305
    """
1306 1307 1308 1309
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1310 1311

    Args:
1312 1313
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1314 1315

    Returns:
1316
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1317 1318 1319 1320

    Examples:
        .. code-block:: python

1321
          import paddle.fluid as fluid
1322
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1323 1324

    """
Y
Yang Yang(Tony) 已提交
1325 1326 1327 1328 1329 1330 1331
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1332
@templatedoc()
1333
def less_than(x, y, force_cpu=None, cond=None):
1334
    """
Y
yuyang18 已提交
1335
    ${comment}
1336 1337

    Args:
Y
yuyang18 已提交
1338 1339 1340
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1341 1342 1343
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1344
        ${out_comment}.
1345 1346 1347 1348

    Examples:
        .. code-block:: python

1349
          import paddle.fluid as fluid
W
Wilber 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
          import numpy as np
  
          # Graph Organizing
          x = fluid.layers.data(name='x', shape=[2], dtype='float64')
          y = fluid.layers.data(name='y', shape=[2], dtype='float64')
          result = fluid.layers.less_than(x=x, y=y)
          # The comment lists another available method.
          # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
          # fluid.layers.less_than(x=x, y=y, cond=result)
  
          # Create an executor using CPU as example
          exe = fluid.Executor(fluid.CPUPlace())
  
          # Execute
          x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
          y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
          result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
          print(result_value) # [[True, False], [False, False]]
1368
    """
Y
Yang Yang(Tony) 已提交
1369 1370
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1371
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1372 1373
        cond.stop_gradient = True

Y
yuyang18 已提交
1374 1375 1376 1377
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

Y
Yang Yang(Tony) 已提交
1378
    helper.append_op(
J
JiayiFeng 已提交
1379 1380 1381 1382
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1383
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1384 1385 1386
    return cond


Z
zhoukunsheng 已提交
1387 1388 1389
@templatedoc()
def less_equal(x, y, cond=None):
    """
1390
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1391 1392

    Args:
1393 1394 1395 1396 1397
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1398 1399

    Returns:
1400
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1401 1402 1403 1404

    Examples:
        .. code-block:: python

1405
          import paddle.fluid as fluid
1406 1407 1408 1409 1410 1411
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1432
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1433 1434

    Args:
1435 1436 1437 1438 1439
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1440 1441

    Returns:
1442
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1443 1444 1445 1446

    Examples:
        .. code-block:: python

1447
          import paddle.fluid as fluid
1448 1449 1450 1451 1452
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1473
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1474 1475

    Args:
1476 1477 1478 1479 1480
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1481 1482

    Returns:
1483
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1484 1485 1486 1487

    Examples:
        .. code-block:: python

1488
          import paddle.fluid as fluid
1489 1490 1491 1492 1493 1494
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1495

Z
zhoukunsheng 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1513
def equal(x, y, cond=None):
1514 1515 1516 1517
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1518 1519 1520 1521 1522
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
1523 1524

    Returns:
W
wangchaochaohu 已提交
1525 1526
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1527 1528 1529 1530

    Examples:
        .. code-block:: python

1531
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1532 1533 1534 1535 1536 1537 1538
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1539 1540 1541
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1542
        cond = helper.create_variable_for_type_inference(dtype='bool')
1543 1544 1545 1546 1547 1548 1549 1550
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1551 1552
def not_equal(x, y, cond=None):
    """
1553
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1554 1555

    Args:
1556 1557 1558 1559 1560
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1561 1562

    Returns:
1563
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1564 1565 1566 1567

    Examples:
        .. code-block:: python

1568 1569 1570 1571
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1585
def array_read(array, i):
1586
    """
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1602

K
kavyasrinet 已提交
1603
    Args:
1604 1605 1606
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1607

K
kavyasrinet 已提交
1608
    Returns:
1609
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1610

K
kavyasrinet 已提交
1611
    Examples:
1612 1613
        .. code-block:: python

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1645
    """
Y
Yu Yang 已提交
1646 1647 1648 1649 1650
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1651
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1652 1653 1654 1655 1656 1657
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1658 1659


1660
def shrink_memory(x, i, table):
1661
    """
Y
yuyang18 已提交
1662
    This function creates an operator to shrink rnn memory using the RankTable
1663
    as mentioned in the input parameter.
Y
yuyang18 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1684
    """
Y
Yang Yu 已提交
1685
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1686
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1687
    helper.append_op(
Y
Yang Yu 已提交
1688
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1689 1690 1691 1692 1693 1694
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1695 1696


1697
def array_length(array):
1698
    """
1699 1700
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
1701
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
1702

K
kavyasrinet 已提交
1703
    Args:
1704
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
1705 1706

    Returns:
1707
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
1708 1709

    Examples:
Q
qiaolongfei 已提交
1710
        .. code-block:: python
K
kavyasrinet 已提交
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1741
    """
Y
Yang Yu 已提交
1742
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1743
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1744 1745 1746 1747
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1748 1749 1750


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1751
    """
1752 1753 1754
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1755 1756 1757
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1774 1775 1776 1777 1778 1779 1780 1781
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
1782
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
1783 1784 1785 1786 1787
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1788
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1800
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1801 1802 1803 1804
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1805
        self.is_scalar_condition = is_scalar_condition
1806
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

1830 1831 1832
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
1833
        param_list = [
W
Wu Yi 已提交
1834
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1835 1836
        ]

X
Xin Pan 已提交
1837 1838 1839 1840 1841
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1842 1843

        step_scope = parent_block.create_var(
1844
            type=core.VarDesc.VarType.STEP_SCOPES)
1845
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
1846 1847
            type='conditional_block',
            inputs={
1848 1849
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1850 1851 1852
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1853 1854 1855 1856 1857
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx

        return grad_sub_block_idx != -1

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            conditional_block_op.desc,
            cpt.to_text(set()), [grad_sub_block.desc])

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
            if grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
            ) or grad_var_name == core.empty_var_name():
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

1942

1943 1944 1945 1946 1947 1948 1949 1950
def copy_var_to_parent_block(var, layer_helper):
    if var is None:
        return None
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

1951 1952
    parent_block_var = parent_block.create_var(
        dtype=var.dtype, shape=var.shape, type=var.type)
1953 1954 1955 1956 1957 1958
    assign(var, parent_block_var)
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

        2. Any tensors or operations created outside of ``true_fn`` and
        ``false_fn`` will be executed regardless of which branch is selected at
        runtime. This has frequently surprised users who expected a lazy
        semantics. For example:

        .. code-block:: python
        
            import paddle.fluid as fluid
            a = fluid.data(name='a', shape=[-1, 1], dtype='float32')
            b = fluid.data(name='b', shape=[-1, 1], dtype='float32')
            c = a * b
            out = fluid.layers.cond(a < b, lambda: a + c, lambda: b * b)

        No matter whether ``a < b`` , ``c = a * b`` will run.
1988 1989 1990 1991

    Args:
        pred(Variable): A boolean tensor whose numel should be 1. The boolean
            value determines whether to return the result of ``true_fn`` or
1992 1993 1994 1995 1996 1997
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
1998
             don't have to set this parameter. For more information, please
1999 2000 2001 2002 2003
             refer to :ref:`api_guide_Name` .

    Returns:
        Variable|list(Variable)|tuple(Variable): returns ``true_fn()`` if the
        predicate ``pred`` is true else ``false_fn()`` .
2004 2005 2006

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2007 2008
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            from paddle.fluid.executor import Executor
            from paddle.fluid.framework import Program, program_guard

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
                return layers.fill_constant(
                    shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
                        shape=[2, 3], dtype='bool', value=True)

            def false_func():
                return layers.fill_constant(
                    shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
                        shape=[4, 5], dtype='int64', value=2)

            main_program = Program()
            startup_program = Program()
            with program_guard(main_program, startup_program):
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
                pred = layers.less_than(x, y)            
                out = layers.cond(pred, true_func, false_func)
                # out is a tuple containing 2 tensors

            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
            #           [ True  True  True]]

2053
    """
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    if in_dygraph_mode():
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
        assert pred.numpy().size == 1, "condition input's numel should be 1"
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
                        "The false_fn in cond must be callable, but received {}".
                        format(type(false_fn).__name__))
                return false_fn()
        return None

2074 2075 2076
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2077
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2078 2079
    if true_fn is not None:
        if not callable(true_fn):
2080 2081 2082
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2083 2084 2085 2086
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2087
                true_output = map_structure(copy_to_parent_func,
2088 2089 2090
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2091 2092 2093
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2094 2095 2096 2097 2098
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True)
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2099
                false_output = map_structure(copy_to_parent_func,
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
    merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
def _error_message(what, arg_name, op_name, right_value, error_value):
    error_message = "{what} of '{arg_name}' in Op({op_name}) must be " \
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable from the first pair whose pred is True,
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not Variable.
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2166
            import paddle.fluid.layers as layers
L
liym27 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
2179
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)      # false: 0.3 == 0.1

                # Call fn_1 because pred_1 is True
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
                out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
        if not isinstance(pred_fn_pairs, (list, tuple)):
            raise TypeError(
                _error_message("The type", "pred_fn_pairs", "case",
                               "list or tuple", type(pred_fn_pairs)))

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
                                   "case", "tuple", type(pred_fn)))
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
                                   "2", str(len(pred_fn)) + "-tuple"))
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2253
class Switch(object):
Q
qiaolongfei 已提交
2254 2255
    """

2256 2257 2258 2259 2260 2261 2262
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2263 2264 2265 2266
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    Member Functions:
        case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
        
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2285

2286 2287
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2288 2289 2290

    Examples:
        .. code-block:: python
2291 2292
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2293

2294
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2295 2296 2297 2298 2299
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2300
            zero_var = fluid.layers.fill_constant(
2301
                shape=[1], dtype='float32', value=0.0)
2302
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2303
                shape=[1], dtype='float32', value=1.0)
2304
            two_var = fluid.layers.fill_constant(
2305
                shape=[1], dtype='float32', value=2.0)
2306

2307
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2308 2309

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2310
                with switch.case(global_step == zero_var):
2311
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2312
                with switch.default():
2313
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2314

2315 2316 2317 2318 2319
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2320 2321
    """

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2407
    """
2408 2409 2410 2411
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2412 2413 2414 2415
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2457
        print(res)
2458
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2459 2460

    Args:
2461 2462
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2463

2464 2465
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2477

X
Xin Pan 已提交
2478
    """
Y
Yu Yang 已提交
2479 2480 2481 2482
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2483
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
2484 2485
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
2486
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2498
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2499
            out_true = parent_block.create_var(
2500 2501
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2502
                dtype=x.dtype)
Y
Yu Yang 已提交
2503 2504

            out_false = parent_block.create_var(
2505 2506
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2507
                dtype=x.dtype)
Y
Yu Yang 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2526
    def _parent_block(self):
Y
Yu Yang 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2542
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2543 2544 2545 2546 2547
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
2548
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2549
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2550
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2551 2552 2553
            out_table.append(outside_out)

            # assign local var to outside
2554
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2555 2556 2557 2558

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2559
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2578
                    level=0))
Y
Yu Yang 已提交
2579
        return rlist
2580 2581 2582


class DynamicRNN(object):
Y
yuyang18 已提交
2583
    """
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
2596
    The input sequences will be shrank because only sequences of which the
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2609

2610 2611 2612 2613
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2614 2615 2616 2617

    Examples:
        .. code-block:: python

2618
            import paddle.fluid as fluid
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2646
    """
2647 2648 2649 2650
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2651 2652
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2653 2654 2655 2656
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2657
        self.zero_idx = None
2658 2659 2660
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
2661
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
2662 2663 2664 2665 2666
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

2667
    def step_input(self, x, level=0):
Y
yuyang18 已提交
2668
        """
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
2712

Y
yuyang18 已提交
2713
        Args:
2714 2715 2716 2717 2718 2719 2720
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
2721 2722

        Returns:
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2757
        """
2758 2759 2760
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
2761
                "step_input() can only take a Variable as its input.")
2762 2763 2764
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
2765
                name=unique_name.generate('lod_rank_table'),
2766 2767 2768 2769 2770
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
2771 2772
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
2773
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
2774 2775
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
2786 2787
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
2788 2789

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
2790
            name=unique_name.generate('dynamic_rnn_input_array'),
2791 2792 2793 2794 2795 2796 2797 2798
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
2799
        return array_read(array=input_array, i=self.step_idx)
2800

Y
yangyaming 已提交
2801
    def static_input(self, x):
Y
yuyang18 已提交
2802
        """
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
2876

Y
yuyang18 已提交
2877
        Args:
2878 2879 2880 2881
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
2882 2883

        Returns:
T
tianshuo78520a 已提交
2884
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
2896 2897 2898 2899

        Examples:
            .. code-block:: python

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2926
        """
Y
yangyaming 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2936
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
2946
    @signature_safe_contextmanager
2947
    def block(self):
Y
yuyang18 已提交
2948
        """
2949 2950 2951 2952 2953 2954
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
2955
        """
2956 2957
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
2958 2959
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
2960 2961 2962 2963
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
2964
            increment(x=self.step_idx, value=1.0, in_place=True)
2965 2966

            for new_mem, mem_array in self.mem_link:
2967 2968
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
2969 2970 2971 2972 2973
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
2974 2975 2976 2977 2978

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
2979
                    x=each_array, table=self.lod_rank_table))
2980 2981

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
2982
        """
T
tianshuo78520a 已提交
2983
        This function is used to get the output  sequences of DynamicRNN.
2984 2985 2986 2987 2988 2989 2990 2991 2992

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
2993
        """
2994
        if self.status != DynamicRNN.AFTER_RNN:
2995 2996
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
2997 2998 2999 3000 3001
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3002 3003 3004 3005 3006 3007
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
3008
        """
3009 3010 3011
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3025
            value (float, optional): When init is None, it is used as initialized value
3026 3027
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3028
                the memory needs to reorder like the RNN's input sequences. It should be
3029 3030 3031 3032 3033 3034 3035
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3036
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3037
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3038
                the memory Tensor also need to be shrank and will only retain data \
3039 3040 3041 3042 3043 3044
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3045

3046 3047 3048
        Examples:
            .. code-block:: python

3049
                import paddle.fluid as fluid
3050

3051 3052
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3065

3066 3067
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3068 3069


3070 3071
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3092
        """
3093
        self._assert_in_rnn_block_('memory')
3094
        self._init_zero_idx_()
3095 3096 3097 3098 3099
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
3100 3101 3102 3103 3104 3105 3106 3107
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3108
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
3119
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3120
                name=unique_name.generate('dynamic_rnn_mem_array'),
3121 3122 3123 3124
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
3125
                inputs={'X': init_tensor,
3126 3127
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
3128
            retv = array_read(array=mem_array, i=self.step_idx)
3129
            retv = shrink_memory(
3130
                x=retv, i=self.step_idx, table=self.lod_rank_table)
3131 3132 3133 3134 3135 3136 3137 3138 3139
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3140
                name=unique_name.generate('mem_init'), dtype=dtype)
3141
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
3142 3143
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3161
        """
3162 3163
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3164
        Args:
3165 3166 3167
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3168 3169 3170

        Returns:
            None
3171 3172 3173 3174 3175 3176
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3177
        """
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3195
        """
3196
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3197 3198

        Args:
3199 3200
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3201 3202 3203

        Returns:
            None
3204 3205 3206

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3207
        """
3208 3209 3210 3211
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
3212
                name=unique_name.generate_with_ignorable_key("_".join(
3213 3214 3215 3216 3217 3218
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
3247 3248


L
liym27 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
    This operator is like a C++ switch/case statement.

    Args:
        branch_index(Variable): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
        TypeError: If the type of ``branch_index`` is not Variable.
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3278 3279
            import paddle.fluid.layers as layers

L
liym27 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
3291
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
                index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
                index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
                res_1, res_2, res_3 = exe.run(main_program,
                                              fetch_list=[out_1, out_2, out_3])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):
        if not isinstance(branch_index, Variable):
            raise TypeError(
                _error_message("The type", "branch_index", "switch_case",
                               "Variable", type(branch_index)))

        if convert_dtype(branch_index.dtype) not in ["uint8", "int32", "int64"]:
            raise TypeError(
                _error_message("The data type", "branch_index", "switch_case",
                               "uint8, int32 or int64",
                               convert_dtype(branch_index.dtype)))

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

        if not isinstance(branch_fns, (list, tuple, dict)):
            raise TypeError(
                _error_message("The type", "branch_fns", "switch_case",
                               "dict, tuple or list", type(branch_fns)))

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
                                   "switch_case", "tuple", type(branch_fns)))

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
                                   "switch_case", "int", type(key)))

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".
                    format(key))
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message("The type of function for key {}".format(
                        key), "branch_fns", "switch_case", "callable", type(
                            fn)))

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3401
@templatedoc()
Y
Yang Yu 已提交
3402
def reorder_lod_tensor_by_rank(x, rank_table):
3403 3404 3405 3406
    """
    ${comment}

    Args:
3407 3408
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3409 3410
    
    Returns:
3411
        out(${out_type}): ${out_comment}.
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
3425 3426 3427 3428
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
3429
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
3430 3431 3432 3433 3434 3435
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
3436 3437


3438
def is_empty(x, cond=None):
3439
    """
F
fengjiayi 已提交
3440
    Test whether a Variable is empty.
3441 3442

    Args:
F
fengjiayi 已提交
3443
        x (Variable): The Variable to be tested.
3444 3445
        cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it
                              saves the test result of given 'x'.
3446 3447

    Returns:
F
fengjiayi 已提交
3448
        Variable: A bool scalar. True if 'x' is an empty Variable.
3449 3450 3451

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
3452
                   not bool.
3453 3454 3455 3456

    Examples:
        .. code-block:: python

3457 3458
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
3459 3460
          res = fluid.layers.is_empty(x=input)
          # or:
3461 3462
          # fluid.layers.is_empty(x=input, cond=res)

3463 3464 3465
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
3466
        cond = helper.create_variable_for_type_inference(dtype='bool')
3467 3468 3469 3470 3471 3472 3473 3474 3475
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond