control_flow.py 77.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
62
          x = fluid.layers.data(name='x', shape=[1])
63 64
          x.persistable = True

Q
qiaolongfei 已提交
65
          y = fluid.layers.data(name='y', shape=[1])
66 67
          y.persistable = True

Q
qiaolongfei 已提交
68
          out_true, out_false = fluid.layers.split_lod_tensor(
69
                input=x, mask=y, level=level)
70

71
    """
72
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
73 74
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


87
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
88 89 90 91 92
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
93 94 95
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
96 97 98 99 100 101 102

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
103
        level(int): The specific lod level to merge.
104 105 106 107 108 109 110

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

111
          import paddle.fluid as fluid
112 113 114 115 116 117 118 119 120 121 122 123
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
124
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
125
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
126 127 128 129 130 131 132 133 134 135 136
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
137 138 139
def Print(input,
          first_n=-1,
          message=None,
140
          summarize=20,
Y
Yan Chunwei 已提交
141 142 143
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
144 145
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
156 157 158 159 160 161 162 163 164
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
165
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
166 167
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
168 169

    Returns:
170
        Variable: Output tensor.
Y
Yan Chunwei 已提交
171

172 173 174 175
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
176

Y
Yan Chunwei 已提交
177 178
    Examples:
        .. code-block:: python
179 180 181
           
           import paddle.fluid as fluid
           
182 183 184 185 186 187
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200 201
    Output at runtime:
        .. code-block:: bash 
           
           1564546375   The content of input layer:     The place is:CPUPlace
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
           # The information of dtype at runtime may vary in different environments.
           # Eg: 
           #    If the dtype='int64' of Tensor y, the corresponding c++ type is int64_t.
           #    The dtype of output is "x" ("x" is typeid(int64_t).name()) with MacOS and gcc4.8.2
Y
Yan Chunwei 已提交
202
    '''
203 204
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
205 206
    helper.append_op(
        type='print',
Y
yangyaming 已提交
207
        inputs={'In': input},
208
        outputs={'Out': output},
Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
217
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
218
        })
219
    return output
Y
Yan Chunwei 已提交
220 221


Y
Yu Yang 已提交
222 223
class BlockGuard(object):
    """
224 225 226 227
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
228 229
    """

230 231
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
232
            raise TypeError("BlockGuard takes a program")
233
        self.main_program = main_program
Y
Yu Yang 已提交
234 235

    def __enter__(self):
W
Wu Yi 已提交
236
        self.main_program._create_block()
Y
Yu Yang 已提交
237 238

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
239
        self.main_program._rollback()
Y
Yu Yang 已提交
240 241 242 243 244
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
245 246 247 248 249
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
250 251
    """

Y
Yu Yang 已提交
252
    def __init__(self, rnn):
X
Xin Pan 已提交
253
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
254
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
255
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
256 257 258 259
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
260
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
261 262

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
263 264
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
265
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
266
        self.rnn._complete_op()
Y
Yang Yang 已提交
267 268
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
269 270 271 272


class StaticRNNMemoryLink(object):
    """
273 274 275 276
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
277 278 279 280 281 282 283 284 285


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
295 296 297
    """
    StaticRNN class.

C
chengduo 已提交
298 299 300 301 302 303 304
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)
326
                rnn.output(word)
327 328

            result = rnn()
C
chengduo 已提交
329 330 331 332 333 334 335 336 337 338

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
339
    """
Y
Yu Yang 已提交
340 341 342 343
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

344 345
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
354 355 356
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
357
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
358 359 360 361 362

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

363 364 365 366 367 368 369
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
370
        """
C
chengduo 已提交
371 372 373 374 375 376
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

377
        Args:
C
chengduo 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
414
        """
Y
Yu Yang 已提交
415 416
        self._assert_in_rnn_block_('memory')
        if init is None:
417
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
418
                raise ValueError(
419
                    "if init is None, memory at least need shape and batch_ref")
420
            parent_block = self._parent_block()
421
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
422
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
423
            boot_var = parent_block.create_var(
424 425
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
426
                dtype=batch_ref.dtype,
427
                persistable=False)
Y
Yu Yang 已提交
428 429

            parent_block.append_op(
430 431
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
432 433 434
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
435
                    'shape': boot_var.shape,
F
fengjiayi 已提交
436
                    'dtype': boot_var.dtype,
437 438
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
439 440 441 442 443
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
444 445
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
446
                dtype=init.dtype,
Y
Yu Yang 已提交
447 448 449 450 451 452
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
453 454 455 456 457 458 459 460 461 462
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
463 464 465 466
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
467
            self.seq_len = x.shape[0]
468
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
469 470 471
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
472
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
473 474 475 476
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
477 478 479 480 481 482 483 484 485
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
486 487 488 489
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
490
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
491 492 493 494
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
495
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
496

497
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
498 499
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
500
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
501 502 503 504

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
505 506 507 508 509 510 511 512 513
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
514 515 516 517
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
518 519 520 521 522 523 524 525 526 527 528
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
529 530 531 532
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

533
    def _parent_block(self):
534
        prog = self.helper.main_program
Y
Yu Yang 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

550
    def _complete_op(self):
551 552
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
553
        parent_block = self._parent_block()
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
568 569 570
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
571 572 573 574 575 576 577 578
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

579
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
580 581 582 583 584 585 586

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
587
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
588 589 590
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
591
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
592 593
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
594 595
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
596 597
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
598 599
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
600 601 602 603
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
604
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
618
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
619 620
                'ex_states': pre_memories,
                'states': memories,
621
                'sub_block': rnn_block
Y
Yu Yang 已提交
622
            })
Y
Yu Yang 已提交
623 624


Y
Yang Yang(Tony) 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
640
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
641 642 643 644
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
645 646 647 648
    """
    while loop control flow.

    Args:
649
        cond(Variable): condition used to compare.
C
chengduo 已提交
650
        is_test(bool): A flag indicating whether execution is in test phase.
651
        name(str): The name of this layer.
X
Xin Pan 已提交
652 653 654

    Examples:
          .. code-block:: python
655 656 657 658 659 660 661 662 663 664
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
665
            with while_op.block():
666 667 668
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
669 670
    """

Y
Yang Yang(Tony) 已提交
671 672 673 674
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
675
    def __init__(self, cond, is_test=False, name=None):
676
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
677 678 679 680
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
681
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
682 683 684 685
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
686
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
687 688 689 690

    def block(self):
        return WhileGuard(self)

691
    def _complete(self):
Y
Yang Yang(Tony) 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
711 712 713
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
714 715 716 717 718 719 720

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
721 722 723 724
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
725 726 727 728
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
729 730
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
731 732


733
def lod_rank_table(x, level=0):
734 735
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
736 737
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
738
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
739 740 741
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
742 743 744 745

        .. code-block:: text

            x is a LoDTensor:
746 747
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
748 749
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
750 751 752
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
753

Y
yangyaming 已提交
754 755 756 757 758 759 760 761 762
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
763 764 765 766

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
767 768
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
769 770 771 772 773 774 775

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

776
            import paddle.fluid as fluid
Y
yangyaming 已提交
777
            x = fluid.layers.data(name='x', shape=[10],
778
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
779
            out = layers.lod_rank_table(x=x, level=0)
780
    """
Y
Yu Yang 已提交
781 782 783
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
784
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
785 786 787 788 789 790
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
791 792


Y
yuyang18 已提交
793
@templatedoc()
794
def max_sequence_len(rank_table):
Y
yuyang18 已提交
795 796 797 798 799 800 801 802
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
803 804

    Args:
Y
yuyang18 已提交
805
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
806 807

    Returns:
Y
yuyang18 已提交
808
        ${out_comment}.
F
fengjiayi 已提交
809 810
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
811
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
812 813 814 815 816 817 818
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


819
def lod_tensor_to_array(x, table):
820
    """
F
fengjiayi 已提交
821 822
    Convert a LoDTensor to a LoDTensorArray.

823 824 825 826 827
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
828
    Users should not use it directly.
829 830

    Args:
F
fengjiayi 已提交
831
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
832 833
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
834
                                descending order. It is generally generated
F
fengjiayi 已提交
835
                                by `layers.lod_rank_table()` API.
836 837

    Returns:
F
fengjiayi 已提交
838
        Variable: The LoDTensorArray that has been converted from the input tensor.
839 840 841 842

    Examples:
        .. code-block:: python

843
          import paddle.fluid as fluid
844 845 846
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
847
    """
848 849
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
850
        name=unique_name.generate("lod_tensor_to_array"),
851
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
852
        dtype=x.dtype)
853 854 855 856 857 858 859 860
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


861
def array_to_lod_tensor(x, table):
862
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
863 864

    Args:
865
        x (Variable|list): The lod tensor array to be converted to a tensor.
866 867 868 869 870 871 872 873 874 875 876
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

877
          import paddle.fluid as fluid
878 879 880 881
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
882
    """
883
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
884
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
885 886 887 888 889 890 891 892
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


893
def increment(x, value=1.0, in_place=True):
894
    """
S
sneaxiy 已提交
895
    This function performs an operation that increments the value in the
896
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
897 898
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
899 900 901 902 903 904 905

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
906
        Variable: The elementwise-incremented object.
907 908 909 910

    Examples:
        .. code-block:: python

911
          import paddle.fluid as fluid
S
sneaxiy 已提交
912 913
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
914
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
915
    """
Y
Yu Yang 已提交
916
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
917
    if not in_place:
X
Xin Pan 已提交
918
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
919 920
    else:
        out = x
Y
Yu Yang 已提交
921 922 923
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
924
        outputs={'Out': [out]},
925
        attrs={'step': float(value)})
Y
Yang Yu 已提交
926
    return out
Y
Yu Yang 已提交
927 928


929
def array_write(x, i, array=None):
930 931 932 933 934
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
935 936 937

    Args:
        x (Variable|list): The input tensor from which the data will be read.
938 939 940 941 942 943 944 945
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

946
    Returns:
947
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
948 949

    Examples:
D
dzhwinter 已提交
950
        .. code-block:: python
951

952
          import paddle.fluid as fluid
953 954
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
955
          arr = fluid.layers.array_write(tmp, i=i)
956
    """
Y
Yu Yang 已提交
957 958 959 960 961
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
962
            dtype=x.dtype)
Y
Yu Yang 已提交
963 964 965 966 967 968 969 970
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


971
def create_array(dtype):
972
    """
Q
qiaolongfei 已提交
973
    **Create LoDTensorArray**
974

Q
qiaolongfei 已提交
975 976
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
977 978

    Args:
Q
qiaolongfei 已提交
979
        dtype (int|float): The data type of the elements in the lod_tensor_array.
980 981

    Returns:
982
        Variable: The lod_tensor_array variable storing the elements of data type.
983 984 985 986

    Examples:
        .. code-block:: python

987
          import paddle.fluid as fluid
988 989 990
          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
991 992 993 994 995 996 997
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
998
@templatedoc()
999
def less_than(x, y, force_cpu=None, cond=None):
1000
    """
Y
yuyang18 已提交
1001
    ${comment}
1002 1003

    Args:
Y
yuyang18 已提交
1004 1005 1006
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1007 1008 1009
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1010
        ${out_comment}.
1011 1012 1013 1014

    Examples:
        .. code-block:: python

1015
          import paddle.fluid as fluid
1016 1017 1018
          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
1019
    """
Y
Yang Yang(Tony) 已提交
1020 1021
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1022
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1023 1024
        cond.stop_gradient = True

Y
yuyang18 已提交
1025 1026 1027 1028 1029 1030
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1031
    helper.append_op(
J
JiayiFeng 已提交
1032 1033 1034 1035
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1036
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1037 1038 1039
    return cond


Z
zhoukunsheng 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

1056 1057 1058 1059
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

1096 1097 1098 1099
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

1136 1137 1138 1139
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1140
          out = fluid.layers.greater_equal(x=label, y=limit)
1141

Z
zhoukunsheng 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1161
def equal(x, y, cond=None):
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1176 1177 1178
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1179 1180 1181 1182
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1183
        cond = helper.create_variable_for_type_inference(dtype='bool')
1184 1185 1186 1187 1188 1189 1190 1191
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

1207 1208 1209 1210
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1224
def array_read(array, i):
1225 1226
    """
    This function performs the operation to read the data in as an
1227
    LOD_TENSOR_ARRAY.
1228 1229 1230 1231 1232 1233

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1234

1235
        And:
1236

1237 1238 1239 1240 1241 1242
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1243
    Args:
1244 1245 1246
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1247 1248
    Returns:
        Variable: The tensor type variable that has the data written to it.
1249

K
kavyasrinet 已提交
1250
    Examples:
1251 1252
        .. code-block:: python

1253
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1254
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1255
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1256
          item = fluid.layers.array_read(array, i)
1257
    """
Y
Yu Yang 已提交
1258 1259 1260 1261 1262
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1263
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1264 1265 1266 1267 1268 1269
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1270 1271


1272
def shrink_memory(x, i, table):
1273
    """
Y
yuyang18 已提交
1274
    This function creates an operator to shrink rnn memory using the RankTable
1275
    as mentioned in the input parameter.
Y
yuyang18 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1296
    """
Y
Yang Yu 已提交
1297
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1298
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1299
    helper.append_op(
Y
Yang Yu 已提交
1300
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1301 1302 1303 1304 1305 1306
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1307 1308


1309
def array_length(array):
1310
    """
Q
qiaolongfei 已提交
1311
    **Get the Length of Input LoDTensorArray**
1312 1313

    This function performs the operation to find the length of the input
1314
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1315

1316 1317
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1318 1319 1320 1321 1322 1323 1324 1325
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1326
        .. code-block:: python
K
kavyasrinet 已提交
1327

1328
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1329 1330 1331 1332
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1333

1334
    """
Y
Yang Yu 已提交
1335
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1336
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1337 1338 1339 1340
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1341 1342 1343


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1344
    """
1345 1346 1347
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1348 1349 1350
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1381
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1393
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1394 1395 1396 1397
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1398
        self.is_scalar_condition = is_scalar_condition
1399
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1424
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1425 1426 1427
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1428 1429 1430 1431 1432
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1433 1434

        step_scope = parent_block.create_var(
1435
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1436 1437 1438
        parent_block.append_op(
            type='conditional_block',
            inputs={
1439 1440
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1441 1442 1443
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1444 1445 1446 1447 1448 1449 1450
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1451
    """
Q
qiaolongfei 已提交
1452 1453
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1454 1455 1456 1457

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1458

Q
qiaolongfei 已提交
1459
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1460 1461 1462 1463

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1464 1465 1466

    Examples:
        .. code-block:: python
1467 1468
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1469

1470
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1471 1472 1473 1474 1475
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1476 1477 1478
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1479
                shape=[1], dtype='float32', value=1.0)
1480 1481 1482 1483 1484
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1485 1486

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1487
                with switch.case(global_step == zero_var):
1488
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1489
                with switch.default():
1490
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1491 1492 1493

    """

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1588

1589 1590 1591 1592
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1593
            limit = fluid.layers.fill_constant_batch_size_like(
1594
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1595 1596
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1597 1598
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1599 1600
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1601 1602 1603 1604
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1605 1606 1607
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1608 1609 1610
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1611 1612 1613 1614
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1615
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1616 1617
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1618
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1630
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1631
            out_true = parent_block.create_var(
1632 1633
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1634
                dtype=x.dtype)
Y
Yu Yang 已提交
1635 1636

            out_false = parent_block.create_var(
1637 1638
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1639
                dtype=x.dtype)
Y
Yu Yang 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1658
    def _parent_block(self):
Y
Yu Yang 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1674
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1675 1676 1677 1678 1679
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1680
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1681
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1682
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1683 1684 1685
            out_table.append(outside_out)

            # assign local var to outside
1686
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1687 1688 1689 1690

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1691
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1710
                    level=0))
Y
Yu Yang 已提交
1711
        return rlist
1712 1713 1714


class DynamicRNN(object):
Y
yuyang18 已提交
1715
    """
Y
yuyang18 已提交
1716 1717 1718
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1719

1720
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1730

C
chengduoZH 已提交
1731 1732 1733
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1754
    """
1755 1756 1757 1758
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1759 1760
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1761 1762 1763 1764
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1765
        self.zero_idx = None
1766 1767 1768
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1769
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1770 1771 1772 1773 1774
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1775
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1776 1777
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1778

Y
yuyang18 已提交
1779
        Args:
1780 1781
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1782 1783 1784 1785

        Returns:
            The current timestep in the input sequence.
        """
1786 1787 1788
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1789
                "step_input() can only take a Variable as its input.")
1790 1791 1792
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1793
                name=unique_name.generate('lod_rank_table'),
1794 1795 1796 1797 1798
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1799 1800
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1801
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1802 1803
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1814 1815
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1816 1817

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1818
            name=unique_name.generate('dynamic_rnn_input_array'),
1819 1820 1821 1822 1823 1824 1825 1826
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1827
        return array_read(array=input_array, i=self.step_idx)
1828

Y
yangyaming 已提交
1829
    def static_input(self, x):
Y
yuyang18 已提交
1830 1831
        """
        Mark a variable as a RNN input. The input will not be scattered into
1832
        time steps. It is optional.
H
haowang101779990 已提交
1833

Y
yuyang18 已提交
1834
        Args:
1835
            x (Variable): The input variable.
Y
yuyang18 已提交
1836 1837 1838

        Returns:
            The input variable that can access in RNN.
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1863
        """
Y
yangyaming 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1873
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1883
    @signature_safe_contextmanager
1884
    def block(self):
Y
yuyang18 已提交
1885
        """
1886
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1887
        """
1888 1889
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1890 1891
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1892 1893 1894 1895
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1896
            increment(x=self.step_idx, value=1.0, in_place=True)
1897 1898

            for new_mem, mem_array in self.mem_link:
1899 1900
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1901 1902 1903 1904 1905
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1906 1907 1908 1909 1910

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1911
                    x=each_array, table=self.lod_rank_table))
1912 1913

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1914 1915 1916
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1917
        if self.status != DynamicRNN.AFTER_RNN:
1918 1919
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1920 1921 1922 1923 1924
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1925 1926 1927 1928 1929 1930
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1931
        """
Y
yuyang18 已提交
1932
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1933 1934 1935 1936 1937 1938

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1956 1957 1958 1959 1960


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1961 1962
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1963

1964
              import paddle.fluid as fluid
Y
yuyang18 已提交
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1975

1976
              rnn_output = drnn()
Y
yuyang18 已提交
1977 1978


1979 1980 1981
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1982
            value(float): the initalized value.
H
haowang101779990 已提交
1983
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1984 1985 1986
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1987
            The memory variable.
Y
yuyang18 已提交
1988
        """
1989
        self._assert_in_rnn_block_('memory')
1990
        self._init_zero_idx_()
1991 1992 1993 1994 1995
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1996 1997 1998 1999 2000 2001 2002 2003
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2004
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2015
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2016
                name=unique_name.generate('dynamic_rnn_mem_array'),
2017 2018 2019 2020
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2021
                inputs={'X': init_tensor,
2022 2023
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2024
            retv = array_read(array=mem_array, i=self.step_idx)
2025
            retv = shrink_memory(
2026
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2027 2028 2029 2030 2031 2032 2033 2034 2035
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2036
                name=unique_name.generate('mem_init'), dtype=dtype)
2037
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2038 2039
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2057 2058 2059
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2060
        
Y
yuyang18 已提交
2061 2062 2063 2064 2065 2066 2067
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2085
        """
2086
        Mark the RNN output variables.
Y
yuyang18 已提交
2087 2088 2089 2090 2091 2092 2093

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2094 2095 2096 2097
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2098
                name=unique_name.generate_with_ignorable_key("_".join(
2099 2100 2101 2102 2103 2104
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2133 2134


2135
@templatedoc()
Y
Yang Yu 已提交
2136
def reorder_lod_tensor_by_rank(x, rank_table):
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2160 2161 2162 2163
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2164
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2165 2166 2167 2168 2169 2170
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2171 2172


2173
def is_empty(x, cond=None):
2174
    """
F
fengjiayi 已提交
2175
    Test whether a Variable is empty.
2176 2177

    Args:
F
fengjiayi 已提交
2178
        x (Variable): The Variable to be tested.
2179
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2180
                              of given 'x'. Default: None
2181 2182

    Returns:
F
fengjiayi 已提交
2183
        Variable: A bool scalar. True if 'x' is an empty Variable.
2184 2185 2186

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2187
                   not bool.
2188 2189 2190 2191

    Examples:
        .. code-block:: python

2192 2193
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2194 2195
          res = fluid.layers.is_empty(x=input)
          # or:
2196 2197
          # fluid.layers.is_empty(x=input, cond=res)

2198 2199 2200
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2201
        cond = helper.create_variable_for_type_inference(dtype='bool')
2202 2203 2204 2205 2206 2207 2208 2209 2210
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond