Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
a091d1a3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a091d1a3
编写于
1月 15, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance print_op.
上级
9deb1756
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
169 addition
and
52 deletion
+169
-52
paddle/operators/print_op.cc
paddle/operators/print_op.cc
+105
-28
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+20
-14
python/paddle/v2/fluid/tests/test_print_op.py
python/paddle/v2/fluid/tests/test_print_op.py
+44
-10
未找到文件。
paddle/operators/print_op.cc
浏览文件 @
a091d1a3
...
...
@@ -16,12 +16,17 @@
#include <ctime>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/variable.h"
namespace
paddle
{
namespace
operators
{
#define CLOG std::cout
const
std
::
string
kForward
=
"FORWARD"
;
const
std
::
string
kBackward
=
"BACKWARD"
;
const
std
::
string
kBoth
=
"BOTH"
;
struct
Formater
{
std
::
string
message
;
std
::
string
name
;
...
...
@@ -122,40 +127,77 @@ class TensorPrintOp : public framework::OperatorBase {
TensorPrintOp
(
const
TensorPrintOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
PADDLE_THROW
(
"Not implemented"
);
PADDLE_THROW
(
"Not implemented
.
"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
// Only run the `first_n` times.
const
framework
::
Variable
*
in_var_ptr
=
nullptr
;
std
::
string
phase
=
kForward
;
std
::
string
printed_var_name
=
""
;
auto
&
inputs
=
Inputs
();
if
(
inputs
.
find
(
"In"
)
!=
inputs
.
end
()
&&
!
Inputs
(
"In"
).
empty
())
{
in_var_ptr
=
scope
.
FindVar
(
Input
(
"In"
));
printed_var_name
=
Inputs
(
"In"
).
front
();
}
else
if
(
inputs
.
find
(
"In@GRAD"
)
!=
inputs
.
end
()
&&
!
Inputs
(
"In@GRAD"
).
empty
())
{
in_var_ptr
=
scope
.
FindVar
(
Input
(
"In@GRAD"
));
printed_var_name
=
Inputs
(
"In@GRAD"
).
front
();
phase
=
kBackward
;
}
else
{
PADDLE_THROW
(
"Unknown phase, should be forward or backward."
);
}
PADDLE_ENFORCE_NOT_NULL
(
in_var_ptr
);
auto
&
in_tensor
=
in_var_ptr
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_var_ptr
=
scope
.
FindVar
(
Output
(
"Out"
));
auto
&
out_tensor
=
*
out_var_ptr
->
GetMutable
<
framework
::
LoDTensor
>
();
// Just copy data from input tensor to output tensor
// output tensor share same memory with input tensor
out_tensor
.
ShareDataWith
(
in_tensor
);
out_tensor
.
set_lod
(
in_tensor
.
lod
());
std
::
string
print_phase
=
Attr
<
std
::
string
>
(
"print_phase"
);
if
(
print_phase
!=
phase
&&
print_phase
!=
kBoth
)
{
return
;
}
int
first_n
=
Attr
<
int
>
(
"first_n"
);
if
(
first_n
>
0
&&
++
times_
>
first_n
)
return
;
PADDLE_ENFORCE
(
!
Inputs
(
"input"
).
empty
(),
"input should be set"
);
auto
*
input_var
=
scope
.
FindVar
(
Input
(
"input"
));
PADDLE_ENFORCE_NOT_NULL
(
input_var
);
auto
&
tensor
=
input_var
->
Get
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
printed_tensor
;
printed_tensor
.
set_lod
(
in_tensor
.
lod
());
printed_tensor
.
Resize
(
in_tensor
.
dims
());
// TODO(ChunweiYan) support GPU
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
tensor
.
place
()));
if
(
platform
::
is_cpu_place
(
in_tensor
.
place
()))
{
printed_tensor
.
ShareDataWith
(
in_tensor
);
}
else
{
// copy data to cpu to print
platform
::
CPUPlace
place
;
framework
::
Copy
(
in_tensor
,
place
,
&
printed_tensor
);
}
Formater
formater
;
if
(
Attr
<
bool
>
(
"print_tensor_name"
))
{
formater
.
name
=
Inputs
(
"input"
).
front
()
;
formater
.
name
=
printed_var_name
;
}
if
(
Attr
<
bool
>
(
"print_tensor_type"
))
{
formater
.
dtype
=
tensor
.
type
();
formater
.
dtype
=
printed_
tensor
.
type
();
}
if
(
Attr
<
bool
>
(
"print_tensor_shape"
))
{
formater
.
dims
.
assign
(
tensor
.
dims
()[
0
],
tensor
.
dims
()[
tensor
.
dims
().
size
()
-
1
]);
auto
&
dims
=
printed_tensor
.
dims
();
formater
.
dims
.
resize
(
dims
.
size
());
for
(
int
i
=
0
;
i
<
dims
.
size
();
++
i
)
formater
.
dims
[
i
]
=
dims
[
i
];
}
if
(
Attr
<
bool
>
(
"print_tensor_lod"
))
{
formater
.
lod
=
tensor
.
lod
();
formater
.
lod
=
printed_
tensor
.
lod
();
}
formater
.
summarize
=
Attr
<
int
>
(
"summarize"
);
formater
.
data
=
(
void
*
)
tensor
.
data
<
void
>
();
formater
(
tensor
.
numel
());
formater
.
data
=
(
void
*
)
printed_
tensor
.
data
<
void
>
();
formater
(
printed_
tensor
.
numel
());
}
private:
...
...
@@ -166,27 +208,46 @@ class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
public:
PrintOpProtoAndCheckMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
input"
,
"the tensor that will
be displayed."
);
AddInput
(
"
In"
,
"Input tensor to
be displayed."
);
AddAttr
<
int
>
(
"first_n"
,
"Only log `first_n` number of times."
);
AddAttr
<
std
::
string
>
(
"message"
,
"A string message to print as a prefix."
);
AddAttr
<
int
>
(
"summarize"
,
"
Print this number of elements in the tensor
."
);
AddAttr
<
int
>
(
"summarize"
,
"
Number of elements printed
."
);
AddAttr
<
bool
>
(
"print_tensor_name"
,
"Whether to print the tensor name."
);
AddAttr
<
bool
>
(
"print_tensor_type"
,
"Whether to print the tensor's dtype."
);
AddAttr
<
bool
>
(
"print_tensor_shape"
,
"Whether to print the tensor's shape."
);
AddAttr
<
bool
>
(
"print_tensor_lod"
,
"Whether to print the tensor's lod."
);
AddAttr
<
std
::
string
>
(
"print_phase"
,
"(string, default 'BOTH') Which phase to display including 'FORWARD' "
"'BACKWARD' and 'BOTH'."
)
.
SetDefault
(
kBoth
)
.
InEnum
({
kForward
,
kBackward
,
kBoth
});
AddOutput
(
"Out"
,
"Output tensor with same data as input tensor."
);
AddComment
(
R"DOC(
Creates a print op that will print when a tensor is accessed.
Creates a print op that will print when a tensor is accessed.
Wraps the tensor passed in so that whenever that a tensor is accessed,
the message `message` is printed, along with the current value of the
tensor `t`.)DOC"
);
Wraps the tensor passed in so that whenever that a tensor is accessed,
the message `message` is printed, along with the current value of the
tensor `t`.)DOC"
);
}
};
class
InferShape
:
public
framework
::
InferShapeBase
{
class
InferShape
Forward
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"input"
),
"input should be set"
);
PADDLE_ENFORCE
(
context
->
HasInput
(
"In"
),
"Input(In) should not be null."
);
context
->
ShareLoD
(
"In"
,
/*->*/
"Out"
);
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"In"
));
}
};
class
InferShapeBackward
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"In@GRAD"
),
"Input(In@GRAD) should not be null."
);
context
->
ShareLoD
(
"In@GRAD"
,
/*->*/
"Out"
);
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"In@GRAD"
));
}
};
...
...
@@ -196,11 +257,27 @@ class InferVarType : public framework::VarTypeInference {
framework
::
BlockDesc
*
block
)
const
override
{}
};
class
PrintOpProtoAndCheckGradOpMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"print_grad"
);
op_desc_ptr
->
SetInput
(
"In@GRAD"
,
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
"Out"
,
InputGrad
(
"In"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op_desc_ptr
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
print
,
paddle
::
operators
::
TensorPrintOp
,
paddle
::
operators
::
PrintOpProtoAndCheckMaker
,
paddle
::
operators
::
InferShape
,
paddle
::
operators
::
InferVarType
,
paddle
::
framework
::
EmptyGradOpMaker
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
print
,
ops
::
TensorPrintOp
,
ops
::
PrintOpProtoAndCheckMaker
,
ops
::
PrintOpProtoAndCheckGradOpMaker
,
ops
::
InferShapeForward
,
ops
::
InferVarType
);
REGISTER_OPERATOR
(
print_grad
,
ops
::
TensorPrintOp
,
ops
::
InferShapeBackward
);
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
a091d1a3
...
...
@@ -117,7 +117,8 @@ def Print(input,
print_tensor_name
=
True
,
print_tensor_type
=
True
,
print_tensor_shape
=
True
,
print_tensor_lod
=
True
):
print_tensor_lod
=
True
,
print_phase
=
'both'
):
'''
**Print operator**
...
...
@@ -128,18 +129,21 @@ def Print(input,
tensor `t`.
Args:
input(Variable): A Tensor to print.
summarize(int): Print this number of elements in the tensor, will print all
if left negative.
message(str): A string message to print as a prefix.
first_n(int): Only log `first_n` number of times.
print_tensor_name(bool): Print the tensor name.
print_tensor_type(bool): Print the tensor type.
print_tensor_shape(bool): Print the tensor shape.
print_tensor_lod(bool): Print the tensor lod.
input (Variable): A Tensor to print.
summarize (int): Print this number of elements in the tensor, will print
all if left is negative.
message (str): A string message to print as a prefix.
first_n (int): Only log `first_n` number of times.
print_tensor_name (bool): Print the tensor name.
print_tensor_type (bool): Print the tensor type.
print_tensor_shape (bool): Print the tensor shape.
print_tensor_lod (bool): Print the tensor lod.
print_phase (bool): Which phase to displace, including 'forward',
'backward' and 'both'. If set to 'backward' or 'both', will
print the gradients of input tensor.
Returns:
None
Variable: Output tensor, same data with input tensor.
Examples:
.. code-block:: python
...
...
@@ -149,10 +153,10 @@ def Print(input,
message="The content of some_layer: ")
'''
helper
=
LayerHelper
(
'print'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
()
)
helper
.
append_op
(
type
=
'print'
,
inputs
=
{
'
input
'
:
input
},
inputs
=
{
'
In
'
:
input
},
attrs
=
{
'first_n'
:
first_n
,
'summarize'
:
summarize
,
...
...
@@ -161,7 +165,9 @@ def Print(input,
'print_tensor_type'
:
print_tensor_type
,
'print_tensor_shape'
:
print_tensor_shape
,
'print_tensor_lod'
:
print_tensor_lod
,
})
'print_phase'
:
print_phase
.
upper
()
},
outputs
=
{
'Out'
:
out
})
return
out
...
...
python/paddle/v2/fluid/tests/test_print_op.py
浏览文件 @
a091d1a3
import
unittest
import
numpy
as
np
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
pd
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.framework
import
switch_main_program
from
paddle.v2.fluid.framework
import
Program
import
numpy
as
np
class
TestPrintOpCPU
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
core
.
CPUPlace
()
self
.
x_tensor
=
core
.
LoDTensor
()
tensor_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
self
.
x_tensor
.
set
(
tensor_np
,
self
.
place
)
self
.
x_tensor
.
set_lod
([[
0
,
1
,
1
]])
def
build_network
(
self
,
only_forward
,
**
kargs
):
x
=
layers
.
data
(
'x'
,
shape
=
[
3
],
dtype
=
'float32'
,
lod_level
=
1
)
x
.
stop_gradient
=
False
printed
=
layers
.
Print
(
input
=
x
,
**
kargs
)
if
only_forward
:
return
printed
loss
=
layers
.
mean
(
x
=
printed
)
append_backward
(
loss
=
loss
)
return
loss
class
TestSumOp
(
unittest
.
TestCase
):
def
test_tensor
(
self
):
i
=
pd
.
zeros
(
shape
=
[
2
,
10
],
dtype
=
'float32'
)
def
test_forward
(
self
):
switch_main_program
(
Program
())
printed
=
self
.
build_network
(
True
,
print_phase
=
'forward'
)
exe
=
Executor
(
self
.
place
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
self
.
x_tensor
},
fetch_list
=
[
printed
],
return_numpy
=
False
)
pd
.
Print
(
i
,
message
=
"I am a message"
,
summarize
=
10
)
def
test_backward
(
self
):
switch_main_program
(
Program
())
loss
=
self
.
build_network
(
False
,
print_phase
=
'backward'
)
exe
=
Executor
(
self
.
place
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
self
.
x_tensor
},
fetch_list
=
[
loss
],
return_numpy
=
False
)
cpu
=
core
.
CPUPlace
()
exe
=
Executor
(
cpu
)
exe
.
run
()
class
TestPrintOpGPU
(
TestPrintOpCPU
):
def
setUp
(
self
):
self
.
place
=
core
.
CUDAPlace
(
0
)
self
.
x_tensor
=
core
.
LoDTensor
()
tensor_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
self
.
x_tensor
.
set
(
tensor_np
,
self
.
place
)
self
.
x_tensor
.
set_lod
([[
0
,
1
,
1
]])
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录