control_flow.py 66.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16
import contextlib
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
24
from .ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
Y
ying 已提交
31
    'While',
32
    'Switch',
Y
ying 已提交
33 34 35 36
    'increment',
    'array_write',
    'create_array',
    'less_than',
37
    'equal',
Y
ying 已提交
38 39 40 41 42 43 44 45
    'array_read',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
46
    'is_empty',
D
dzhwinter 已提交
47 48
]

Y
Yu Yang 已提交
49

50
def split_lod_tensor(input, mask, level=0):
51 52 53 54
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
55 56
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
57 58 59 60 61

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
62
        level(int): The specific lod level to split.
63 64

    Returns:
Q
qiaolongfei 已提交
65 66 67 68
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
69 70 71 72

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
73
          x = fluid.layers.data(name='x', shape=[1])
74 75
          x.persistable = True

Q
qiaolongfei 已提交
76
          y = fluid.layers.data(name='y', shape=[1])
77 78
          y.persistable = True

Q
qiaolongfei 已提交
79
          out_true, out_false = fluid.layers.split_lod_tensor(
80
                input=x, mask=y, level=level)
81

82
    """
83
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
84 85
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
86 87 88 89 90 91 92 93 94 95 96 97
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


98
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
99 100 101 102 103
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
104 105 106
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
107 108 109 110 111 112 113

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
114
        level(int): The specific lod level to merge.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
134
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
135
    out = helper.create_tmp_variable(dtype=in_true.dtype)
136 137 138 139 140 141 142 143 144 145 146
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
147 148 149 150 151 152 153
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
154 155
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163 164 165
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
166 167 168 169 170 171 172 173 174
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
175
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
176 177
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
178 179

    Returns:
Y
yangyaming 已提交
180
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
181

Y
Yan Chunwei 已提交
182

Y
Yan Chunwei 已提交
183
    Examples:
Y
Yan Chunwei 已提交
184

Y
Yan Chunwei 已提交
185 186
        .. code-block:: python

Y
Yan Chunwei 已提交
187 188 189
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
190 191
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
192
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
193 194
    helper.append_op(
        type='print',
Y
yangyaming 已提交
195
        inputs={'In': input},
Y
Yan Chunwei 已提交
196 197 198 199 200 201 202 203
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
204 205 206
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
207 208 209
    return out


Y
Yu Yang 已提交
210 211
class BlockGuard(object):
    """
212 213 214 215
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
216 217
    """

218 219
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
220
            raise TypeError("BlockGuard takes a program")
221
        self.main_program = main_program
Y
Yu Yang 已提交
222 223

    def __enter__(self):
224
        self.main_program.create_block()
Y
Yu Yang 已提交
225 226

    def __exit__(self, exc_type, exc_val, exc_tb):
227
        self.main_program.rollback()
Y
Yu Yang 已提交
228 229 230 231 232
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
233
class ParallelDo(object):
234
    """
L
Luo Tao 已提交
235 236
    ParallelDo is used to represent multi-thread data parallel processing.

L
Luo Tao 已提交
237
    Its vanilla implementation can be shown as the following (:math:`|` means
L
Luo Tao 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
L
Luo Tao 已提交
253
        |      Copy param@grad to the place of parallel_do_op
L
Luo Tao 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
283

L
Luo Tao 已提交
284
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
285 286
    """

Y
Yang Yang 已提交
287
    def __init__(self, places, use_nccl=False, name=None):
288 289 290
        warnings.warn(
            "API ParallelDo is deprecated since 0.15.0. Please use ParallelExecutor instead.",
            Warning)
Y
Yang Yang 已提交
291 292 293 294 295
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
296
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
320
        return var
Y
Yang Yang 已提交
321 322 323 324 325 326 327 328 329 330

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
331
        params = list()
Y
Yang Yang 已提交
332 333 334 335 336 337 338 339
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
340 341 342 343 344

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
345
        params = list(set(params))
Y
Yang Yang 已提交
346 347 348

        return [parent_block.var(name) for name in params]

349
    def _complete_op(self):
Y
Yang Yang 已提交
350 351 352 353 354 355 356
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
357 358 359 360 361 362 363 364 365 366
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
367
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
368
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
369 370 371 372 373 374 375 376

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
377
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
378
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
379 380
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
381 382 383 384 385 386 387


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
388 389
    """

Y
Yu Yang 已提交
390
    def __init__(self, rnn):
Y
Yang Yang 已提交
391 392 393 394
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
395 396 397 398
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
399
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
400 401

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
402 403
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
404
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
405
        self.rnn._complete_op()
Y
Yang Yang 已提交
406 407
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
408 409 410 411


class StaticRNNMemoryLink(object):
    """
412 413 414 415
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
416 417 418 419 420 421 422 423 424


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
425 426 427 428 429 430 431 432 433
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
434 435 436 437 438 439
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
440 441 442 443
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

444 445
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
454
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
455 456 457 458 459

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

460 461 462 463 464 465 466
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
467 468 469 470 471 472 473 474 475
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
476 477
        self._assert_in_rnn_block_('memory')
        if init is None:
478
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
479
                raise ValueError(
480
                    "if init is None, memory at least need shape and batch_ref")
481
            parent_block = self._parent_block()
Y
Yu Yang 已提交
482 483
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
484
            boot_var = parent_block.create_var(
485 486
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
487
                dtype=batch_ref.dtype,
488
                persistable=False)
Y
Yu Yang 已提交
489 490

            parent_block.append_op(
491 492
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
493 494 495
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
496
                    'shape': boot_var.shape,
F
fengjiayi 已提交
497
                    'dtype': boot_var.dtype,
498 499
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
500 501 502 503 504
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
505
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
506
                dtype=init.dtype,
Y
Yu Yang 已提交
507 508 509 510 511 512 513 514 515 516
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
517 518
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
519 520 521
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
522
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
523 524 525 526 527 528 529 530
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
531
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
532 533 534 535
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
536
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
537

538
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
539 540
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
541
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
542 543 544 545 546 547 548 549 550 551 552 553

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

554
    def _parent_block(self):
555
        prog = self.helper.main_program
Y
Yu Yang 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

571
    def _complete_op(self):
572 573
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
574
        parent_block = self._parent_block()
Y
Yu Yang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
608
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
609 610 611 612
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
613
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
614 615 616 617 618

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
619
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
635
                'sub_block': rnn_block
Y
Yu Yang 已提交
636
            })
Y
Yu Yang 已提交
637 638


Y
Yang Yang(Tony) 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
654
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
655 656 657 658
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
659 660 661 662 663 664 665 666 667 668
    """
    while loop control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str): The name of this layer.

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
669 670 671
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
672

X
Xin Pan 已提交
673 674 675 676 677 678 679
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
680 681
    """

Y
Yang Yang(Tony) 已提交
682 683 684 685
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

686 687
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
688 689 690 691
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
692
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
693 694 695 696 697 698 699 700
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

701
    def _complete(self):
Y
Yang Yang(Tony) 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
730 731 732 733
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
734 735 736 737
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
738
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
739 740


741
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
742 743 744
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
745
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
746 747 748
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
749 750 751 752

        .. code-block:: text

            x is a LoDTensor:
753 754
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
755 756
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
757 758 759
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
760

Y
yangyaming 已提交
761 762 763 764 765 766 767 768 769
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
770 771 772 773

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
774 775
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
776 777 778 779 780 781 782 783

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
784
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
785
            out = layers.lod_rank_table(x=x, level=0)
786
    """
Y
Yu Yang 已提交
787 788 789
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
790
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
791 792 793 794 795 796
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
797 798


Y
yuyang18 已提交
799
@templatedoc()
800
def max_sequence_len(rank_table):
Y
yuyang18 已提交
801 802 803 804 805 806 807 808
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
809 810

    Args:
Y
yuyang18 已提交
811
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
812 813

    Returns:
Y
yuyang18 已提交
814
        ${out_comment}.
F
fengjiayi 已提交
815 816 817 818 819 820 821 822 823 824
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


825
def lod_tensor_to_array(x, table):
826
    """
F
fengjiayi 已提交
827 828
    Convert a LoDTensor to a LoDTensorArray.

829 830 831 832 833
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
834
    Users should not use it directly.
835 836

    Args:
F
fengjiayi 已提交
837
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
838 839
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
840
                                descending order. It is generally generated
F
fengjiayi 已提交
841
                                by `layers.lod_rank_table()` API.
842 843

    Returns:
F
fengjiayi 已提交
844
        Variable: The LoDTensorArray that has been converted from the input tensor.
845 846 847 848 849 850 851

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
852
    """
853 854
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
855
        name=unique_name.generate("lod_tensor_to_array"),
856
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
857
        dtype=x.dtype)
858 859 860 861 862 863 864 865
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


866
def array_to_lod_tensor(x, table):
867
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
868 869

    Args:
870
        x (Variable|list): The lod tensor array to be converted to a tensor.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
886
    """
887
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
888
    tmp = helper.create_tmp_variable(dtype=x.dtype)
889 890 891 892 893 894 895 896
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


897
def increment(x, value=1.0, in_place=True):
898 899
    """
    This function performs an operation that increments each value in the
900 901 902 903 904 905 906 907 908
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
909
        Variable: The elementwise-incremented object.
910 911 912 913 914 915

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
916
    """
Y
Yu Yang 已提交
917
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
918
    if not in_place:
F
fengjiayi 已提交
919
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
920 921
    else:
        out = x
Y
Yu Yang 已提交
922 923 924
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
925
        outputs={'Out': [out]},
926
        attrs={'step': float(value)})
Y
Yang Yu 已提交
927
    return out
Y
Yu Yang 已提交
928 929


930
def array_write(x, i, array=None):
931 932 933 934 935
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
936 937 938

    Args:
        x (Variable|list): The input tensor from which the data will be read.
939 940 941 942 943 944 945 946
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

947
    Returns:
948
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
949 950

    Examples:
D
dzhwinter 已提交
951
        .. code-block:: python
952 953 954 955

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
956
    """
Y
Yu Yang 已提交
957 958 959 960 961
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
962
            dtype=x.dtype)
Y
Yu Yang 已提交
963 964 965 966 967 968 969 970
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


971
def create_array(dtype):
972
    """
Q
qiaolongfei 已提交
973
    **Create LoDTensorArray**
974

Q
qiaolongfei 已提交
975 976
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
977 978

    Args:
Q
qiaolongfei 已提交
979
        dtype (int|float): The data type of the elements in the lod_tensor_array.
980 981

    Returns:
982
        Variable: The lod_tensor_array variable storing the elements of data type.
983 984 985 986 987 988 989

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
990 991 992 993 994 995 996
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
997 998
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
999
    """
Y
yuyang18 已提交
1000
    ${comment}
1001

Y
yuyang18 已提交
1002 1003
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
1004 1005

    Args:
Y
yuyang18 已提交
1006 1007 1008
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1009 1010 1011
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1012
        ${out_comment}.
1013
    """
Y
Yang Yang(Tony) 已提交
1014 1015 1016 1017 1018
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
1019 1020 1021 1022 1023 1024
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1025
    helper.append_op(
J
JiayiFeng 已提交
1026 1027 1028 1029
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1030
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1031 1032 1033
    return cond


1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1064
def array_read(array, i):
1065 1066
    """
    This function performs the operation to read the data in as an
1067
    LOD_TENSOR_ARRAY.
1068 1069 1070 1071 1072 1073

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1074

1075
        And:
1076

1077 1078 1079 1080 1081 1082
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1083
    Args:
1084 1085 1086
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1087 1088
    Returns:
        Variable: The tensor type variable that has the data written to it.
1089

K
kavyasrinet 已提交
1090
    Examples:
1091 1092
        .. code-block:: python

K
kavyasrinet 已提交
1093 1094 1095
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1096
    """
Y
Yu Yang 已提交
1097 1098 1099 1100 1101
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1102
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1103 1104 1105 1106 1107 1108
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1109 1110


1111
def shrink_memory(x, i, table):
1112
    """
Y
yuyang18 已提交
1113
    This function creates an operator to shrink rnn memory using the RankTable
1114
    as mentioned in the input parameter.
Y
yuyang18 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1135
    """
Y
Yang Yu 已提交
1136
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1137
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1138
    helper.append_op(
Y
Yang Yu 已提交
1139
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1140 1141 1142 1143 1144 1145
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1146 1147


1148
def array_length(array):
1149
    """
Q
qiaolongfei 已提交
1150
    **Get the Length of Input LoDTensorArray**
1151 1152

    This function performs the operation to find the length of the input
1153
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1154

1155 1156
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1157 1158 1159 1160 1161 1162 1163 1164
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1165
        .. code-block:: python
K
kavyasrinet 已提交
1166 1167 1168 1169 1170

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1171

1172
    """
Y
Yang Yu 已提交
1173 1174 1175 1176 1177 1178
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1179 1180 1181


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1182
    """
1183 1184 1185
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1186 1187 1188
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1230
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1231 1232 1233 1234
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1235
        self.is_scalar_condition = is_scalar_condition
1236
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1261
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1262 1263 1264 1265 1266
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1267
            if var_name in intermediate
Y
Yu Yang 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1280 1281 1282 1283 1284 1285 1286
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1287
    """
Q
qiaolongfei 已提交
1288 1289
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1290 1291 1292 1293

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1294

Q
qiaolongfei 已提交
1295
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1296 1297 1298 1299

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1300 1301 1302 1303

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1316
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1317 1318 1319
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1320 1321 1322

    """

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1352 1353
        """
        create a default case for this switch
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1422

X
improve  
Xin Pan 已提交
1423
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1424
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1425 1426
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1427 1428
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1429 1430
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1431 1432 1433 1434
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1435 1436 1437
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1438 1439 1440
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1441 1442 1443 1444
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1445
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1446 1447
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1448
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1460
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1461
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1462
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1463
                dtype=x.dtype)
Y
Yu Yang 已提交
1464 1465

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1466
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1467
                dtype=x.dtype)
Y
Yu Yang 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1486
    def _parent_block(self):
Y
Yu Yang 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1502
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1503 1504 1505 1506 1507
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1508 1509
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1510
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1511 1512 1513
            out_table.append(outside_out)

            # assign local var to outside
1514
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1515 1516 1517 1518

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1519
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1538
                    level=0))
Y
Yu Yang 已提交
1539
        return rlist
1540 1541 1542


class DynamicRNN(object):
Y
yuyang18 已提交
1543
    """
Y
yuyang18 已提交
1544 1545 1546
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1575 1576 1577 1578
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1579 1580
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1581 1582 1583 1584
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1585 1586
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1606 1607 1608
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1609
                "step_input() can only take a Variable as its input.")
1610 1611 1612
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1613
                name=unique_name.generate('lod_rank_table'),
1614 1615 1616 1617 1618 1619 1620
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1621 1622
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1633 1634
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1635 1636

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1637
            name=unique_name.generate('dynamic_rnn_input_array'),
1638 1639 1640 1641 1642 1643 1644 1645
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1646
        return array_read(array=input_array, i=self.step_idx)
1647

Y
yangyaming 已提交
1648
    def static_input(self, x):
Y
yuyang18 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1667
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1677 1678
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1679 1680 1681 1682
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1683 1684
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1685 1686
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1687 1688 1689 1690
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1691
            increment(x=self.step_idx, value=1.0, in_place=True)
1692 1693

            for new_mem, mem_array in self.mem_link:
1694 1695
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1696 1697 1698 1699 1700
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1701 1702 1703 1704 1705

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1706
                    x=each_array, table=self.lod_rank_table))
1707 1708

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1709 1710 1711
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1712
        if self.status != DynamicRNN.AFTER_RNN:
1713 1714
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1715 1716 1717 1718 1719
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1720 1721 1722 1723 1724 1725
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1726
        """
Y
yuyang18 已提交
1727
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1790 1791 1792 1793 1794 1795
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1796 1797 1798 1799 1800 1801 1802 1803
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1804
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1815
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1816
                name=unique_name.generate('dynamic_rnn_mem_array'),
1817 1818 1819 1820
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1821
                inputs={'X': init_tensor,
1822 1823
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1824
            retv = array_read(array=mem_array, i=self.step_idx)
1825
            retv = shrink_memory(
1826
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1827 1828 1829 1830 1831 1832 1833 1834 1835
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1836
                name=unique_name.generate('mem_init'), dtype=dtype)
1837
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1838 1839
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1893 1894 1895 1896
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1897
                name=unique_name.generate("_".join(
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1916 1917


1918
@autodoc()
Y
Yang Yu 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1931 1932 1933 1934


def is_empty(x, cond=None, **ignored):
    """
F
fengjiayi 已提交
1935
    Test whether a Variable is empty.
1936 1937

    Args:
F
fengjiayi 已提交
1938
        x (Variable): The Variable to be tested.
1939
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1940
                              of given 'x'. Default: None
1941 1942

    Returns:
F
fengjiayi 已提交
1943
        Variable: A bool scalar. True if 'x' is an empty Variable.
1944 1945 1946

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1947
                   not bool.
1948 1949 1950 1951

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1952 1953 1954
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond