blas_impl.h 49.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
15 16 17
#ifdef PADDLE_WITH_MKLML
#include <mkl.h>
#endif
18

S
ShenLiang 已提交
19
#include <algorithm>
T
tensor-tang 已提交
20
#include <cmath>
T
tensor-tang 已提交
21
#include <limits>
Y
Yu Yang 已提交
22
#include <vector>
23

Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/platform/bfloat16.h"
26
#include "paddle/fluid/platform/complex.h"
Y
Yu Yang 已提交
27 28 29 30

namespace paddle {
namespace operators {
namespace math {
31 32 33 34 35 36 37 38 39 40 41 42 43
namespace detail {

template <typename T>
static void axpy(int n, const T alpha, const T *x, const int incx, T *y,
                 const int incy) {
  // Y = Y + alpha * X
  while (n-- > 0) {
    *y += alpha * *x;
    y = y + incy;
    x = x + incx;
  }
}
}  // namespace detail
Y
Yu Yang 已提交
44 45 46 47

template <typename T>
struct CBlas;

48 49 50 51
template <>
struct CBlas<int8_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
52 53
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
54 55 56
  }
};

57 58 59 60 61 62 63 64 65
template <>
struct CBlas<int16_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
  }
};

66 67
template <>
struct CBlas<platform::bfloat16> {
68 69 70 71 72
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    detail::axpy(args...);
  }

73 74 75 76 77 78 79 80
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU with bfloat16,"
        " please check your code"));
  }
};

81
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
82 83
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
84 85
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
86
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
87
  }
Y
Yu Yang 已提交
88

T
tensor-tang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
109 110 111 112 113 114
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
115

Y
Yu Yang 已提交
116 117
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
118 119 120 121 122 123 124 125 126 127 128 129 130
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
131 132 133 134 135
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
136 137 138 139 140
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
141 142 143 144 145
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

146 147 148
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
149 150
  }

151 152
  template <typename... ARGS>
  static void VADD(ARGS... args) {
153 154
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
155

156 157 158 159 160
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vsSub(args...);
  }

T
tensor-tang 已提交
161 162 163 164
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
165

166 167 168 169 170
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vsDiv(args...);
  }

T
tensor-tang 已提交
171 172 173 174
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
175 176

  template <typename... ARGS>
T
tensor-tang 已提交
177
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
178 179 180 181 182 183 184
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
185 186 187 188 189

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
190 191 192 193 194

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
195
#if !defined(_WIN32)
196 197 198 199
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
200
#endif
G
Guo Sheng 已提交
201 202 203 204 205

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_strsm(args...);
  }
206 207 208 209 210 211 212 213 214
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
235 236 237 238 239 240
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
241

242 243 244
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
245 246 247 248
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
249
    platform::dynload::cblas_dcopy(args...);
250 251
  }

Y
Yu Yang 已提交
252 253
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
254
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
255 256
  }

T
tensor-tang 已提交
257 258 259 260 261
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
262 263 264 265 266
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
267 268 269 270 271
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
272 273
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
274 275 276 277 278 279 280
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
281

282 283 284 285 286
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vdSub(args...);
  }

T
tensor-tang 已提交
287 288 289 290
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
291

292 293 294 295 296
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vdDiv(args...);
  }

T
tensor-tang 已提交
297 298 299 300
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
301 302

  template <typename... ARGS>
T
tensor-tang 已提交
303
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
304 305 306 307 308 309 310
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
311 312 313 314 315

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
316 317 318 319 320

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
321
#if !defined(_WIN32)
322 323 324 325
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
326
#endif
G
Guo Sheng 已提交
327 328 329 330 331

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_dtrsm(args...);
  }
332 333
};

334
template <>
335
struct CBlas<platform::complex<float>> {
336
  template <typename... ARGS>
337 338 339
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
340 341 342
    platform::dynload::cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_ccopy(args...);
  }

  // the libmklml_intel.so paddle used has no vcAdd, vcSub,
  // vcMul, vcDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vcAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vcSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vcMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vcDiv(args...);
  }
  */

  template <typename... ARGS>
374 375 376
  static void VADD(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
377 378 379 380 381 382
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
383 384 385
  static void VSUB(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
386 387 388 389 390 391
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
392 393 394
  static void VMUL(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
395 396 397 398 399
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
400 401 402
  static void VDIV(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
403 404 405 406 407 408 409
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
410 411 412 413 414
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *X, int incx,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, int incy) {
415 416 417 418 419 420 421 422 423 424
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_cgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
425 426 427 428 429
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *B, int ldb,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, int ldc) {
430 431 432 433 434 435 436
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_cgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

437 438 439 440 441 442 443 444 445 446 447
  static void TRSM(CBLAS_LAYOUT layout, CBLAS_SIDE side, CBLAS_UPLO uplo,
                   CBLAS_TRANSPOSE trans_a, CBLAS_DIAG diag, int M, int N,
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   paddle::platform::complex<float> *B, int ldb) {
    const void *a_ = (const void *)(A);
    void *b_ = static_cast<void *>(B);
    platform::dynload::cblas_ctrsm(layout, side, uplo, trans_a, diag, M, N,
                                   &alpha, a_, lda, b_, ldb);
  }

448 449 450
  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
451 452 453 454 455 456
                         paddle::platform::complex<float> *alpha,
                         const paddle::platform::complex<float> **A,
                         const int *lda,
                         const paddle::platform::complex<float> **B,
                         const int *ldb, paddle::platform::complex<float> *beta,
                         paddle::platform::complex<float> **C, const int *ldc,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_cgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_cgemm_batch(args...);
  }
};

template <>
474
struct CBlas<platform::complex<double>> {
475
  template <typename... ARGS>
476 477 478
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
479 480 481
    platform::dynload::cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_zcopy(args...);
  }

  // the libmklml_intel.so paddle used has no vzAdd, vzSub,
  // vzMul, vzDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vzAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vzSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vzMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vzDiv(args...);
  }
  */

  template <typename... ARGS>
513 514 515
  static void VADD(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
516 517 518 519 520 521
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
522 523 524
  static void VSUB(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
525 526 527 528 529 530
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
531 532 533
  static void VMUL(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
534 535 536 537 538
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
539 540 541
  static void VDIV(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
542 543 544 545 546 547 548
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
549 550 551 552 553
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *X, int incx,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, int incy) {
554 555 556 557 558 559 560 561 562 563
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_zgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
564 565 566 567 568
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *B, int ldb,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, int ldc) {
569 570 571 572 573 574 575
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_zgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

576 577 578 579 580 581 582 583 584 585 586
  static void TRSM(CBLAS_LAYOUT layout, CBLAS_SIDE side, CBLAS_UPLO uplo,
                   CBLAS_TRANSPOSE trans_a, CBLAS_DIAG diag, int M, int N,
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   paddle::platform::complex<double> *B, int ldb) {
    const void *a_ = (const void *)(A);
    void *b_ = static_cast<void *>(B);
    platform::dynload::cblas_ztrsm(layout, side, uplo, trans_a, diag, M, N,
                                   &alpha, a_, lda, b_, ldb);
  }

587 588 589
  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
590 591 592 593 594 595 596
                         paddle::platform::complex<double> *alpha,
                         const paddle::platform::complex<double> **A,
                         const int *lda,
                         const paddle::platform::complex<double> **B,
                         const int *ldb,
                         paddle::platform::complex<double> *beta,
                         paddle::platform::complex<double> **C, const int *ldc,
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_zgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_zgemm_batch(args...);
  }
};

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
635
  }
G
Guo Sheng 已提交
636 637 638 639 640

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_strsm(args...);
  }
Y
Yu Yang 已提交
641 642 643 644
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
645 646 647 648
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
649 650 651 652 653 654

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

655 656 657 658 659
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
660 661 662 663
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
G
Guo Sheng 已提交
664 665 666 667 668

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_dtrsm(args...);
  }
Y
Yu Yang 已提交
669
};
670 671

template <>
672
struct CBlas<platform::complex<float>> {
673 674 675 676 677 678
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_ccopy(args...);
  }

  template <typename... ARGS>
679 680 681
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
682 683 684 685 686 687
    cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
688 689 690 691 692
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *X, const int incX,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, const int incY) {
693 694 695 696 697 698
    cblas_cgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
699 700 701 702 703
                   const int K, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *B, const int ldb,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, const int ldc) {
704 705 706
    cblas_cgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
707 708 709 710 711 712 713 714 715

  static void TRSM(const CBLAS_LAYOUT layout, const CBLAS_SIDE side,
                   const CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transA,
                   const CBLAS_DIAG diag, const int M, const int N,
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   paddle::platform::complex<double> *B, const int ldb) {
    cblas_ctrsm(layout, side, uplo, transA, diag, M, N, &alpha, A, lda, B, ldb);
  }
716 717 718
};

template <>
719
struct CBlas<platform::complex<double>> {
720 721 722 723 724 725
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_zcopy(args...);
  }

  template <typename... ARGS>
726 727 728
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
729 730 731 732 733 734
    cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
735 736 737 738 739
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *X, const int incX,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, const int incY) {
740 741 742 743 744 745
    cblas_zgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
746 747 748 749 750
                   const int K, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *B, const int ldb,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, const int ldc) {
751 752 753
    cblas_zgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
754 755 756 757 758 759 760 761 762

  static void TRSM(const CBLAS_LAYOUT layout, const CBLAS_SIDE side,
                   const CBLAS_UPLO uplo, const CBLAS_TRANSPOSE transA,
                   const CBLAS_DIAG diag, const int M, const int N,
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   paddle::platform::complex<double> *B, const int ldb) {
    cblas_ztrsm(layout, side, uplo, transA, diag, M, N, &alpha, A, lda, B, ldb);
  }
763 764
};

765
#endif
T
tensor-tang 已提交
766

Y
Yu Yang 已提交
767 768
template <>
struct CBlas<platform::float16> {
769 770 771 772 773
  static void GEMM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM not supported on CPU, please check your code"));
  }

T
tensor-tang 已提交
774
  static void SMM_GEMM(...) {
775 776
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SMM_GEMM not supported on CPU, please check your code"));
T
tensor-tang 已提交
777
  }
778 779 780
  static void VMUL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VMUL not supported on CPU, please check your code"));
T
tensor-tang 已提交
781
  }
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
  static void VEXP(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VEXP not supported on CPU, please check your code"));
  }
  static void VSQUARE(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VSQUARE not supported on CPU, please check your code"));
  }
  static void VPOW(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VPOW not supported on CPU, please check your code"));
  }
  static void DOT(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 DOT not supported on CPU, please check your code"));
  };
  static void SCAL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SCAL not supported on CPU, please check your code"));
  };
  static void ASUM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 ASUM not supported on CPU, please check your code"));
  };
Y
Yu Yang 已提交
806 807
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
808 809
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM_BATCH not supported on CPU, please check your code"));
Y
Yu Yang 已提交
810 811
  }
#endif
Y
Yu Yang 已提交
812
};
T
tensor-tang 已提交
813

T
tensor-tang 已提交
814
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
847
#endif
T
tensor-tang 已提交
848

T
tensor-tang 已提交
849 850 851 852 853 854 855 856 857
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
858 859
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
860 861 862 863
}

template <>
template <typename T>
Y
Yu Yang 已提交
864 865 866 867
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
882 883
}

Y
Yu Yang 已提交
884 885 886 887 888 889 890 891 892
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
893 894 895 896 897 898 899 900 901 902 903 904
  PADDLE_ENFORCE_EQ(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, true,
      platform::errors::InvalidArgument(
          "The input and output of matmul should be matrix, the dim size must "
          "be 2,"
          "but received dim size input_a:%d, input_b:%d, output:%d",
          dim_a.size(), dim_b.size(), dim_out.size()));
  PADDLE_ENFORCE_EQ(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(), true,
      platform::errors::InvalidArgument("The places of matrices in the matmul "
                                        "should be same, please check your "
                                        "code."));
Y
Yu Yang 已提交
905 906 907 908 909 910 911 912 913 914 915 916

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
917 918 919 920 921 922 923
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

924 925 926 927 928 929 930 931 932 933 934 935 936
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
937
  if (x == z) {
938
    this->template AXPY<T>(n, (T)(1.), y, z);
939 940
  } else {
    this->template VCOPY<T>(n, y, z);
941
    this->template AXPY<T>(n, (T)(1.), x, z);
942
  }
943 944 945
#endif
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VSUB(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSUB(n, x, y, z);
#else
  // try to find if openblas support vsub
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
#endif
}

T
tensor-tang 已提交
960 961 962 963 964 965 966 967 968 969
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
970 971 972 973 974 975 976 977 978 979 980 981 982 983
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VDIV(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VDIV(n, x, y, z);
#else
  // try to find if openblas support vdiv
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] / y[i];
T
tensor-tang 已提交
984 985 986 987
  }
#endif
}

T
tensor-tang 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

T
tensor-tang 已提交
1001 1002
template <>
template <typename T>
T
tensor-tang 已提交
1003
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
1004
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
1005
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
1006 1007
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
1008
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

T
tensor-tang 已提交
1026 1027 1028 1029
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
1030
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

T
tensor-tang 已提交
1041 1042
template <>
template <typename T>
T
tensor-tang 已提交
1043
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

J
Jacek Czaja 已提交
1054 1055 1056 1057 1058
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
1059
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
1060
#else
J
Jacek Czaja 已提交
1061
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
1062 1063 1064 1065 1066 1067 1068
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

Y
Yu Yang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
1084 1085 1086 1087 1088 1089
  PADDLE_ENFORCE_NOT_NULL(
      A, platform::errors::InvalidArgument("Pointer A should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      B, platform::errors::InvalidArgument("Pointer B should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      C, platform::errors::InvalidArgument("Pointer C should not be null."));
Y
Yu Yang 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
1108 1109 1110
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
1111 1112 1113 1114 1115
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

S
ShenLiang 已提交
1116 1117 1118 1119 1120 1121
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T **A, const T **B, T beta, T **C, int batchCount) const {
#ifdef PADDLE_WITH_MKLML
W
wanghuancoder 已提交
1122 1123 1124
  const int lda = (std::max)((transA == CblasNoTrans) ? K : M, 1);
  const int ldb = (std::max)((transB == CblasNoTrans) ? N : K, 1);
  const int ldc = (std::max)(N, 1);
S
ShenLiang 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, A,
                       &lda, B, &ldb, &beta, C, &ldc, 1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
#endif
}

1136 1137
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)  // @{ Group Blas MKLML: BatchedGEMMWithHead
1138 1139 1140
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
1141 1142 1143 1144 1145 1146
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2,
    int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number,
    bool split_b_vertical) const {
  int lda = (transA == CblasNoTrans) ? W1 : H1;
  int ldb = (transB == CblasNoTrans) ? W2 : H2;
1147 1148 1149 1150
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
  if (split_b_vertical) {
    int ldc = W2;
    int sub_width = W2 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W2 / head_number)
                                : i * (W2 / head_number) * H2;
      int sub_matC_offset = i * W2 / head_number;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width,
                           &H2, &alpha, a_array.data(), &lda, b_array.data(),
                           &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
1173 1174
    }

1175
  } else {
1176 1177 1178 1179 1180 1181 1182
    PADDLE_ENFORCE_EQ(
        W1, H2,
        platform::errors::InvalidArgument(
            "The fisrt matrix width should be same as second matrix height,"
            "but received fisrt matrix width %d"
            ", second matrix height %d",
            W1, H2));
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    int ldc = W2 * head_number;
    int sub_width = W1 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W1 / head_number) * W2
                                : i * (W1 / head_number);
      int sub_matC_offset = i * W2;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2,
                           &sub_width, &alpha, a_array.data(), &lda,
                           b_array.data(), &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }
1205 1206
  }
}
1207
#endif  // @} End Group Blas MKLML: BatchedGEMMWithHead
1208

T
tensor-tang 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}

Y
Yu Yang 已提交
1245 1246 1247 1248 1249 1250 1251
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
1252 1253 1254 1255 1256 1257 1258 1259 1260
  MatMul(mat_a.data<T>(), dim_a, mat_b.data<T>(), dim_b, alpha,
         mat_out->data<T>(), beta);
}

template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const T *mat_a, const MatDescriptor &dim_a,
                                 const T *mat_b, const MatDescriptor &dim_b,
                                 T alpha, T *mat_out, T beta) const {
1261 1262 1263 1264 1265 1266 1267 1268
  PADDLE_ENFORCE_EQ(
      dim_a.width_, dim_b.height_,
      platform::errors::InvalidArgument(
          "The fisrt matrix width should be same as second matrix height,"
          "but received fisrt matrix width %d"
          ", second matrix height %d",
          dim_a.width_, dim_b.height_));

Y
Yu Yang 已提交
1269 1270 1271 1272
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
1273
                           dim_a.width_, alpha, mat_a, mat_b, beta, mat_out);
Y
Yu Yang 已提交
1274
  } else {
1275 1276 1277 1278 1279 1280 1281 1282
    PADDLE_ENFORCE_EQ(
        dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
            dim_b.batch_size_ == 0,
        true, platform::errors::InvalidArgument(
                  "dim_a.batch_size should be equal to dim_b.batch_size, or "
                  "one of dim_a.batch_size and dim_b.batch_size should be 0. "
                  "But got dim_a.batch_size = %d, dim_b.batch_size = %d.",
                  dim_a.batch_size_, dim_b.batch_size_));
Y
Yu Yang 已提交
1283
    this->template BatchedGEMM<T>(
1284 1285
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha, mat_a,
        mat_b, beta, mat_out,
Y
Yu Yang 已提交
1286 1287 1288 1289
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
1290

1291 1292 1293
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
// @{ Group Blas MKLML: MatMulWithHead
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
T
tianshuo78520a 已提交
1304 1305
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be
 * (horizontally) split as 4 matrix of [6, 4]. The result of final matrix
1306 1307
 * will be 4 matrix of [3, 4], i.e. [3, 16].
 * Another example is A is [3, 8], B is [2, 16], head_number is 4. In this
T
tianshuo78520a 已提交
1308
 * case, A will be split as [3, 2], B will be (vertically) split as
1309
 * [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
1310 1311 1312
 */
template <typename DeviceContext>
template <typename T>
1313 1314 1315 1316 1317 1318 1319
void Blas<DeviceContext>::MatMulWithHead(const framework::Tensor &mat_a,
                                         const MatDescriptor &dim_a,
                                         const framework::Tensor &mat_b,
                                         const MatDescriptor &dim_b, T alpha,
                                         int head_number,
                                         framework::Tensor *mat_out, T beta,
                                         bool mat_b_split_vertical) const {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
  PADDLE_ENFORCE_EQ(
      dim_a.width_ % head_number, 0,
      platform::errors::InvalidArgument(
          "The first input width must be some times the head number"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
  PADDLE_ENFORCE_GE(head_number, 1,
                    platform::errors::InvalidArgument(
                        "The head number should be greater equal 1,"
                        "but received head number %d",
                        head_number));
  PADDLE_ENFORCE_LE(
      head_number, dim_a.width_,
      platform::errors::InvalidArgument(
          "The head number should be less equal first input width,"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
1339 1340 1341
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

1342
  if (mat_b_split_vertical) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    PADDLE_ENFORCE_EQ(
        dim_b.height_, dim_a.width_ / head_number,
        platform::errors::InvalidArgument(
            "The second input height should be equal than first input width,"
            "but received second input height %d, first input width %d",
            dim_b.height_, dim_a.width_ / head_number));
    PADDLE_ENFORCE_EQ(
        dim_a.width_ % head_number, 0,
        platform::errors::InvalidArgument(
            "The second input width should be some times the head number"
            "but received second input width %d"
            ",  head_number %d",
            dim_b.width_, head_number));
1356 1357
  }

1358
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
    int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
    int sub_matA_offset;
    int sub_matB_offset;
    int sub_matC_offset;
    int sub_mat_M = dim_a.height_;
    int sub_mat_N;
    int sub_mat_K;
    int ldc;

1369
    for (int i = 0; i < head_number; i++) {
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
      sub_matA_offset = dim_a.trans_
                            ? i * (dim_a.width_ / head_number) * dim_a.height_
                            : i * (dim_a.width_ / head_number);
      if (mat_b_split_vertical) {
        sub_matB_offset = dim_b.trans_
                              ? i * (dim_b.width_ / head_number) * dim_b.height_
                              : i * (dim_b.width_ / head_number);
        sub_matC_offset = i * dim_b.width_ / head_number;

        sub_mat_N = dim_b.width_ / head_number;
        sub_mat_K = dim_b.height_;

        ldc = dim_b.width_;
      } else {
        sub_matB_offset =
            dim_b.trans_ ? i * (dim_b.height_ / head_number)
                         : i * (dim_b.height_ / head_number) * dim_b.width_;
        sub_matC_offset = i * dim_b.width_;

        sub_mat_N = dim_b.width_;
        sub_mat_K = dim_a.width_ / head_number;

        ldc = head_number * dim_b.width_;
      }

      this->template GEMM<T>(transA, transB, sub_mat_M, sub_mat_N, sub_mat_K,
                             alpha, mat_a.data<T>() + sub_matA_offset, lda,
1397 1398 1399 1400
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    PADDLE_ENFORCE_EQ(
        (dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
         dim_b.batch_size_ == 0),
        true,
        platform::errors::InvalidArgument(
            "The first input batch size should be equal than second input,"
            "either two input batch size is 0, but received first input batch "
            "size"
            " %d, second input batch size %d",
            dim_a.batch_size_, dim_b.batch_size_));
1411 1412

    this->template BatchedGEMMWithHead<T>(
1413 1414 1415
        transA, transB, dim_a.width_, dim_a.height_, dim_b.width_,
        dim_b.height_, alpha, mat_a.data<T>(), mat_b.data<T>(), beta,
        mat_out->data<T>(),
1416
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
1417
        dim_a.stride_, dim_b.stride_, head_number, mat_b_split_vertical);
1418 1419
  }
}
1420
#endif  // @} End Group Blas MKLML: MatMulWithHead
1421

Y
Use mkl  
Yu Yang 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
1433

Y
Yihua Xu 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
#endif

G
Guo Sheng 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                            CBLAS_TRANSPOSE transA,
                                            CBLAS_DIAG diag, int M, int N,
                                            T alpha, const T *A, int lda, T *B,
                                            int ldb) const {
  CBlas<T>::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda,
                 B, ldb);
}

Y
Yu Yang 已提交
1471 1472 1473
}  // namespace math
}  // namespace operators
}  // namespace paddle