blas_impl.h 46.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
15 16 17
#ifdef PADDLE_WITH_MKLML
#include <mkl.h>
#endif
18

S
ShenLiang 已提交
19
#include <algorithm>
T
tensor-tang 已提交
20
#include <cmath>
T
tensor-tang 已提交
21
#include <limits>
Y
Yu Yang 已提交
22
#include <vector>
23

Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/platform/bfloat16.h"
26
#include "paddle/fluid/platform/complex.h"
Y
Yu Yang 已提交
27 28 29 30

namespace paddle {
namespace operators {
namespace math {
31 32 33 34 35 36 37 38 39 40 41 42 43
namespace detail {

template <typename T>
static void axpy(int n, const T alpha, const T *x, const int incx, T *y,
                 const int incy) {
  // Y = Y + alpha * X
  while (n-- > 0) {
    *y += alpha * *x;
    y = y + incy;
    x = x + incx;
  }
}
}  // namespace detail
Y
Yu Yang 已提交
44 45 46 47

template <typename T>
struct CBlas;

48 49 50 51
template <>
struct CBlas<int8_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
52 53
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
54 55 56
  }
};

57 58
template <>
struct CBlas<platform::bfloat16> {
59 60 61 62 63
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    detail::axpy(args...);
  }

64 65 66 67 68 69 70 71
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU with bfloat16,"
        " please check your code"));
  }
};

72
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
73 74
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
75 76
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
77
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
78
  }
Y
Yu Yang 已提交
79

T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
100 101 102 103 104 105
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
106

Y
Yu Yang 已提交
107 108
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
109 110 111 112 113 114 115 116 117 118 119 120 121
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
122 123 124 125 126
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
127 128 129 130 131
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
132 133 134 135 136
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

137 138 139
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
140 141
  }

142 143
  template <typename... ARGS>
  static void VADD(ARGS... args) {
144 145
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
146

147 148 149 150 151
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vsSub(args...);
  }

T
tensor-tang 已提交
152 153 154 155
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
156

157 158 159 160 161
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vsDiv(args...);
  }

T
tensor-tang 已提交
162 163 164 165
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
166 167

  template <typename... ARGS>
T
tensor-tang 已提交
168
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
169 170 171 172 173 174 175
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
176 177 178 179 180

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
181 182 183 184 185

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
186
#if !defined(_WIN32)
187 188 189 190
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
191
#endif
G
Guo Sheng 已提交
192 193 194 195 196

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_strsm(args...);
  }
197 198 199 200 201 202 203 204 205
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
226 227 228 229 230 231
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
232

233 234 235
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
236 237 238 239
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
240
    platform::dynload::cblas_dcopy(args...);
241 242
  }

Y
Yu Yang 已提交
243 244
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
245
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
246 247
  }

T
tensor-tang 已提交
248 249 250 251 252
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
253 254 255 256 257
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
258 259 260 261 262
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
263 264
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
265 266 267 268 269 270 271
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
272

273 274 275 276 277
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vdSub(args...);
  }

T
tensor-tang 已提交
278 279 280 281
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
282

283 284 285 286 287
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vdDiv(args...);
  }

T
tensor-tang 已提交
288 289 290 291
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
292 293

  template <typename... ARGS>
T
tensor-tang 已提交
294
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
295 296 297 298 299 300 301
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
302 303 304 305 306

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
307 308 309 310 311

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
312
#if !defined(_WIN32)
313 314 315 316
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
317
#endif
G
Guo Sheng 已提交
318 319 320 321 322

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_dtrsm(args...);
  }
323 324
};

325
template <>
326
struct CBlas<platform::complex<float>> {
327
  template <typename... ARGS>
328 329 330
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
331 332 333
    platform::dynload::cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_ccopy(args...);
  }

  // the libmklml_intel.so paddle used has no vcAdd, vcSub,
  // vcMul, vcDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vcAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vcSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vcMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vcDiv(args...);
  }
  */

  template <typename... ARGS>
365 366 367
  static void VADD(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
368 369 370 371 372 373
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
374 375 376
  static void VSUB(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
377 378 379 380 381 382
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
383 384 385
  static void VMUL(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
386 387 388 389 390
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
391 392 393
  static void VDIV(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
394 395 396 397 398 399 400
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
401 402 403 404 405
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *X, int incx,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, int incy) {
406 407 408 409 410 411 412 413 414 415
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_cgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
416 417 418 419 420
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *B, int ldb,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, int ldc) {
421 422 423 424 425 426 427 428 429 430
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_cgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
431 432 433 434 435 436
                         paddle::platform::complex<float> *alpha,
                         const paddle::platform::complex<float> **A,
                         const int *lda,
                         const paddle::platform::complex<float> **B,
                         const int *ldb, paddle::platform::complex<float> *beta,
                         paddle::platform::complex<float> **C, const int *ldc,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_cgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_cgemm_batch(args...);
  }
};

template <>
454
struct CBlas<platform::complex<double>> {
455
  template <typename... ARGS>
456 457 458
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
459 460 461
    platform::dynload::cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_zcopy(args...);
  }

  // the libmklml_intel.so paddle used has no vzAdd, vzSub,
  // vzMul, vzDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vzAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vzSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vzMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vzDiv(args...);
  }
  */

  template <typename... ARGS>
493 494 495
  static void VADD(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
496 497 498 499 500 501
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
502 503 504
  static void VSUB(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
505 506 507 508 509 510
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
511 512 513
  static void VMUL(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
514 515 516 517 518
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
519 520 521
  static void VDIV(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
522 523 524 525 526 527 528
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
529 530 531 532 533
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *X, int incx,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, int incy) {
534 535 536 537 538 539 540 541 542 543
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_zgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
544 545 546 547 548
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *B, int ldb,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, int ldc) {
549 550 551 552 553 554 555 556 557 558
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_zgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
559 560 561 562 563 564 565
                         paddle::platform::complex<double> *alpha,
                         const paddle::platform::complex<double> **A,
                         const int *lda,
                         const paddle::platform::complex<double> **B,
                         const int *ldb,
                         paddle::platform::complex<double> *beta,
                         paddle::platform::complex<double> **C, const int *ldc,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_zgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_zgemm_batch(args...);
  }
};

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
604
  }
G
Guo Sheng 已提交
605 606 607 608 609

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_strsm(args...);
  }
Y
Yu Yang 已提交
610 611 612 613
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
614 615 616 617
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
618 619 620 621 622 623

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

624 625 626 627 628
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
629 630 631 632
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
G
Guo Sheng 已提交
633 634 635 636 637

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_dtrsm(args...);
  }
Y
Yu Yang 已提交
638
};
639 640

template <>
641
struct CBlas<platform::complex<float>> {
642 643 644 645 646 647
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_ccopy(args...);
  }

  template <typename... ARGS>
648 649 650
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
651 652 653 654 655 656
    cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
657 658 659 660 661
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *X, const int incX,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, const int incY) {
662 663 664 665 666 667
    cblas_cgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
668 669 670 671 672
                   const int K, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *B, const int ldb,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, const int ldc) {
673 674 675 676 677 678
    cblas_cgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
};

template <>
679
struct CBlas<platform::complex<double>> {
680 681 682 683 684 685
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_zcopy(args...);
  }

  template <typename... ARGS>
686 687 688
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
689 690 691 692 693 694
    cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
695 696 697 698 699
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *X, const int incX,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, const int incY) {
700 701 702 703 704 705
    cblas_zgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
706 707 708 709 710
                   const int K, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *B, const int ldb,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, const int ldc) {
711 712 713 714 715
    cblas_zgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
};

716
#endif
T
tensor-tang 已提交
717

Y
Yu Yang 已提交
718 719
template <>
struct CBlas<platform::float16> {
720 721 722 723 724
  static void GEMM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM not supported on CPU, please check your code"));
  }

T
tensor-tang 已提交
725
  static void SMM_GEMM(...) {
726 727
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SMM_GEMM not supported on CPU, please check your code"));
T
tensor-tang 已提交
728
  }
729 730 731
  static void VMUL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VMUL not supported on CPU, please check your code"));
T
tensor-tang 已提交
732
  }
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  static void VEXP(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VEXP not supported on CPU, please check your code"));
  }
  static void VSQUARE(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VSQUARE not supported on CPU, please check your code"));
  }
  static void VPOW(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VPOW not supported on CPU, please check your code"));
  }
  static void DOT(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 DOT not supported on CPU, please check your code"));
  };
  static void SCAL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SCAL not supported on CPU, please check your code"));
  };
  static void ASUM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 ASUM not supported on CPU, please check your code"));
  };
Y
Yu Yang 已提交
757 758
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
759 760
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM_BATCH not supported on CPU, please check your code"));
Y
Yu Yang 已提交
761 762
  }
#endif
Y
Yu Yang 已提交
763
};
T
tensor-tang 已提交
764

T
tensor-tang 已提交
765
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
798
#endif
T
tensor-tang 已提交
799

T
tensor-tang 已提交
800 801 802 803 804 805 806 807 808
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
809 810
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
811 812 813 814
}

template <>
template <typename T>
Y
Yu Yang 已提交
815 816 817 818
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
833 834
}

Y
Yu Yang 已提交
835 836 837 838 839 840 841 842 843
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
844 845 846 847 848 849 850 851 852 853 854 855
  PADDLE_ENFORCE_EQ(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, true,
      platform::errors::InvalidArgument(
          "The input and output of matmul should be matrix, the dim size must "
          "be 2,"
          "but received dim size input_a:%d, input_b:%d, output:%d",
          dim_a.size(), dim_b.size(), dim_out.size()));
  PADDLE_ENFORCE_EQ(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(), true,
      platform::errors::InvalidArgument("The places of matrices in the matmul "
                                        "should be same, please check your "
                                        "code."));
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863 864 865 866 867

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
868 869 870 871 872 873 874
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

875 876 877 878 879 880 881 882 883 884 885 886 887
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
888
  if (x == z) {
889
    this->template AXPY<T>(n, (T)(1.), y, z);
890 891
  } else {
    this->template VCOPY<T>(n, y, z);
892
    this->template AXPY<T>(n, (T)(1.), x, z);
893
  }
894 895 896
#endif
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VSUB(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSUB(n, x, y, z);
#else
  // try to find if openblas support vsub
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
#endif
}

T
tensor-tang 已提交
911 912 913 914 915 916 917 918 919 920
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
921 922 923 924 925 926 927 928 929 930 931 932 933 934
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VDIV(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VDIV(n, x, y, z);
#else
  // try to find if openblas support vdiv
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] / y[i];
T
tensor-tang 已提交
935 936 937 938
  }
#endif
}

T
tensor-tang 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

T
tensor-tang 已提交
952 953
template <>
template <typename T>
T
tensor-tang 已提交
954
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
955
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
956
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
957 958
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
959
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

T
tensor-tang 已提交
977 978 979 980
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
981
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
982 983 984 985 986 987 988 989 990 991
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

T
tensor-tang 已提交
992 993
template <>
template <typename T>
T
tensor-tang 已提交
994
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
995 996 997 998 999 1000 1001 1002 1003 1004
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

J
Jacek Czaja 已提交
1005 1006 1007 1008 1009
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
1010
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
1011
#else
J
Jacek Czaja 已提交
1012
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
1013 1014 1015 1016 1017 1018 1019
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

Y
Yu Yang 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
1053 1054 1055
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
1056 1057 1058 1059 1060
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

S
ShenLiang 已提交
1061 1062 1063 1064 1065 1066
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T **A, const T **B, T beta, T **C, int batchCount) const {
#ifdef PADDLE_WITH_MKLML
W
wanghuancoder 已提交
1067 1068 1069
  const int lda = (std::max)((transA == CblasNoTrans) ? K : M, 1);
  const int ldb = (std::max)((transB == CblasNoTrans) ? N : K, 1);
  const int ldc = (std::max)(N, 1);
S
ShenLiang 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, A,
                       &lda, B, &ldb, &beta, C, &ldc, 1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
#endif
}

1081 1082
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)  // @{ Group Blas MKLML: BatchedGEMMWithHead
1083 1084 1085
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
1086 1087 1088 1089 1090 1091
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2,
    int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number,
    bool split_b_vertical) const {
  int lda = (transA == CblasNoTrans) ? W1 : H1;
  int ldb = (transB == CblasNoTrans) ? W2 : H2;
1092 1093 1094 1095
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  if (split_b_vertical) {
    int ldc = W2;
    int sub_width = W2 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W2 / head_number)
                                : i * (W2 / head_number) * H2;
      int sub_matC_offset = i * W2 / head_number;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width,
                           &H2, &alpha, a_array.data(), &lda, b_array.data(),
                           &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
1118 1119
    }

1120
  } else {
1121 1122 1123 1124 1125 1126 1127
    PADDLE_ENFORCE_EQ(
        W1, H2,
        platform::errors::InvalidArgument(
            "The fisrt matrix width should be same as second matrix height,"
            "but received fisrt matrix width %d"
            ", second matrix height %d",
            W1, H2));
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    int ldc = W2 * head_number;
    int sub_width = W1 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W1 / head_number) * W2
                                : i * (W1 / head_number);
      int sub_matC_offset = i * W2;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2,
                           &sub_width, &alpha, a_array.data(), &lda,
                           b_array.data(), &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }
1150 1151
  }
}
1152
#endif  // @} End Group Blas MKLML: BatchedGEMMWithHead
1153

T
tensor-tang 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}

Y
Yu Yang 已提交
1190 1191 1192 1193 1194 1195 1196
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
1197 1198 1199 1200 1201 1202 1203 1204
  PADDLE_ENFORCE_EQ(
      dim_a.width_, dim_b.height_,
      platform::errors::InvalidArgument(
          "The fisrt matrix width should be same as second matrix height,"
          "but received fisrt matrix width %d"
          ", second matrix height %d",
          dim_a.width_, dim_b.height_));

Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210 1211
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                           dim_a.width_, alpha, mat_a.data<T>(),
                           mat_b.data<T>(), beta, mat_out->data<T>());
  } else {
1212 1213 1214 1215 1216 1217 1218 1219
    PADDLE_ENFORCE_EQ(
        dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
            dim_b.batch_size_ == 0,
        true, platform::errors::InvalidArgument(
                  "dim_a.batch_size should be equal to dim_b.batch_size, or "
                  "one of dim_a.batch_size and dim_b.batch_size should be 0. "
                  "But got dim_a.batch_size = %d, dim_b.batch_size = %d.",
                  dim_a.batch_size_, dim_b.batch_size_));
Y
Yu Yang 已提交
1220 1221 1222 1223 1224 1225 1226
    this->template BatchedGEMM<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
1227

1228 1229 1230
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
// @{ Group Blas MKLML: MatMulWithHead
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
T
tianshuo78520a 已提交
1241 1242
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be
 * (horizontally) split as 4 matrix of [6, 4]. The result of final matrix
1243 1244
 * will be 4 matrix of [3, 4], i.e. [3, 16].
 * Another example is A is [3, 8], B is [2, 16], head_number is 4. In this
T
tianshuo78520a 已提交
1245
 * case, A will be split as [3, 2], B will be (vertically) split as
1246
 * [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
1247 1248 1249
 */
template <typename DeviceContext>
template <typename T>
1250 1251 1252 1253 1254 1255 1256
void Blas<DeviceContext>::MatMulWithHead(const framework::Tensor &mat_a,
                                         const MatDescriptor &dim_a,
                                         const framework::Tensor &mat_b,
                                         const MatDescriptor &dim_b, T alpha,
                                         int head_number,
                                         framework::Tensor *mat_out, T beta,
                                         bool mat_b_split_vertical) const {
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
  PADDLE_ENFORCE_EQ(
      dim_a.width_ % head_number, 0,
      platform::errors::InvalidArgument(
          "The first input width must be some times the head number"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
  PADDLE_ENFORCE_GE(head_number, 1,
                    platform::errors::InvalidArgument(
                        "The head number should be greater equal 1,"
                        "but received head number %d",
                        head_number));
  PADDLE_ENFORCE_LE(
      head_number, dim_a.width_,
      platform::errors::InvalidArgument(
          "The head number should be less equal first input width,"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
1276 1277 1278
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

1279
  if (mat_b_split_vertical) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    PADDLE_ENFORCE_EQ(
        dim_b.height_, dim_a.width_ / head_number,
        platform::errors::InvalidArgument(
            "The second input height should be equal than first input width,"
            "but received second input height %d, first input width %d",
            dim_b.height_, dim_a.width_ / head_number));
    PADDLE_ENFORCE_EQ(
        dim_a.width_ % head_number, 0,
        platform::errors::InvalidArgument(
            "The second input width should be some times the head number"
            "but received second input width %d"
            ",  head_number %d",
            dim_b.width_, head_number));
1293 1294
  }

1295
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
    int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
    int sub_matA_offset;
    int sub_matB_offset;
    int sub_matC_offset;
    int sub_mat_M = dim_a.height_;
    int sub_mat_N;
    int sub_mat_K;
    int ldc;

1306
    for (int i = 0; i < head_number; i++) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
      sub_matA_offset = dim_a.trans_
                            ? i * (dim_a.width_ / head_number) * dim_a.height_
                            : i * (dim_a.width_ / head_number);
      if (mat_b_split_vertical) {
        sub_matB_offset = dim_b.trans_
                              ? i * (dim_b.width_ / head_number) * dim_b.height_
                              : i * (dim_b.width_ / head_number);
        sub_matC_offset = i * dim_b.width_ / head_number;

        sub_mat_N = dim_b.width_ / head_number;
        sub_mat_K = dim_b.height_;

        ldc = dim_b.width_;
      } else {
        sub_matB_offset =
            dim_b.trans_ ? i * (dim_b.height_ / head_number)
                         : i * (dim_b.height_ / head_number) * dim_b.width_;
        sub_matC_offset = i * dim_b.width_;

        sub_mat_N = dim_b.width_;
        sub_mat_K = dim_a.width_ / head_number;

        ldc = head_number * dim_b.width_;
      }

      this->template GEMM<T>(transA, transB, sub_mat_M, sub_mat_N, sub_mat_K,
                             alpha, mat_a.data<T>() + sub_matA_offset, lda,
1334 1335 1336 1337
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    PADDLE_ENFORCE_EQ(
        (dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
         dim_b.batch_size_ == 0),
        true,
        platform::errors::InvalidArgument(
            "The first input batch size should be equal than second input,"
            "either two input batch size is 0, but received first input batch "
            "size"
            " %d, second input batch size %d",
            dim_a.batch_size_, dim_b.batch_size_));
1348 1349

    this->template BatchedGEMMWithHead<T>(
1350 1351 1352
        transA, transB, dim_a.width_, dim_a.height_, dim_b.width_,
        dim_b.height_, alpha, mat_a.data<T>(), mat_b.data<T>(), beta,
        mat_out->data<T>(),
1353
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
1354
        dim_a.stride_, dim_b.stride_, head_number, mat_b_split_vertical);
1355 1356
  }
}
1357
#endif  // @} End Group Blas MKLML: MatMulWithHead
1358

Y
Use mkl  
Yu Yang 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
1370

Y
Yihua Xu 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
#endif

G
Guo Sheng 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                            CBLAS_TRANSPOSE transA,
                                            CBLAS_DIAG diag, int M, int N,
                                            T alpha, const T *A, int lda, T *B,
                                            int ldb) const {
  CBlas<T>::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda,
                 B, ldb);
}

Y
Yu Yang 已提交
1408 1409 1410
}  // namespace math
}  // namespace operators
}  // namespace paddle