blas_impl.h 23.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
T
tensor-tang 已提交
15
#include <cmath>
T
tensor-tang 已提交
16
#include <limits>
Y
Yu Yang 已提交
17
#include <vector>
Y
Yu Yang 已提交
18 19 20 21 22 23 24 25 26
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CBlas;

27
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
28 29
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
30 31
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
32
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
33
  }
Y
Yu Yang 已提交
34

T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
55 56 57 58 59 60
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
61

Y
Yu Yang 已提交
62 63
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
64 65 66 67 68 69 70 71 72 73 74 75 76
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
77 78 79 80 81
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
82 83 84 85 86
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
87 88 89 90 91
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

92 93 94
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
95 96
  }

97 98
  template <typename... ARGS>
  static void VADD(ARGS... args) {
99 100
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
101 102 103 104 105

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
106 107 108 109 110

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
111 112

  template <typename... ARGS>
T
tensor-tang 已提交
113
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
114 115 116 117 118 119 120
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
121 122 123 124 125

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
126 127 128 129 130

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
131 132 133 134 135

  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
136 137 138 139 140 141 142 143 144
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
165 166 167 168 169 170
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
171

172 173 174
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
175 176 177 178
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
179
    platform::dynload::cblas_dcopy(args...);
180 181
  }

Y
Yu Yang 已提交
182 183
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
184
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
185 186
  }

T
tensor-tang 已提交
187 188 189 190 191
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
192 193 194 195 196
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
197 198 199 200 201
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
202 203
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
204 205 206 207 208 209 210
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
211 212 213 214 215

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
216 217 218 219 220

  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
221 222

  template <typename... ARGS>
T
tensor-tang 已提交
223
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
224 225 226 227 228 229 230
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
231 232 233 234 235

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
236 237 238 239 240

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
241 242 243 244 245

  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
270
  }
Y
Yu Yang 已提交
271 272 273 274
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
275 276 277 278
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
279 280 281 282 283 284

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

285 286 287 288 289
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
290 291 292 293
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
Y
Yu Yang 已提交
294
};
295
#endif
T
tensor-tang 已提交
296

Y
Yu Yang 已提交
297 298
template <>
struct CBlas<platform::float16> {
Y
Yu Yang 已提交
299
  static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); }
T
tensor-tang 已提交
300 301 302
  static void SMM_GEMM(...) {
    PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
  }
T
tensor-tang 已提交
303
  static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); }
T
tensor-tang 已提交
304
  static void VEXP(...) { PADDLE_THROW("float16 VEXP not supported on CPU"); }
T
tensor-tang 已提交
305 306 307
  static void VSQUARE(...) {
    PADDLE_THROW("float16 VSQUARE not supported on CPU");
  }
T
tensor-tang 已提交
308
  static void VPOW(...) { PADDLE_THROW("float16 VPOW not supported on CPU"); }
T
tensor-tang 已提交
309
  static void DOT(...) { PADDLE_THROW("float16 DOT not supported on CPU"); };
T
tensor-tang 已提交
310
  static void SCAL(...) { PADDLE_THROW("float16 SCAL not supported on CPU"); };
J
Jacek Czaja 已提交
311
  static void ASUM(...) { PADDLE_THROW("float16 ASUM not supported on CPU"); };
Y
Yu Yang 已提交
312 313 314 315 316
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
    PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
  }
#endif
Y
Yu Yang 已提交
317
};
T
tensor-tang 已提交
318

T
tensor-tang 已提交
319
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
352
#endif
T
tensor-tang 已提交
353

T
tensor-tang 已提交
354 355 356 357 358 359 360 361 362
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
363 364
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
365 366 367 368
}

template <>
template <typename T>
Y
Yu Yang 已提交
369 370 371 372
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
387 388
}

Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");
  PADDLE_ENFORCE(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(),
      "The places of matrices must be same");

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
415 416 417 418 419 420 421
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

422 423 424 425 426 427 428 429 430 431 432 433 434
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
435 436 437 438 439 440
  if (x == z) {
    this->template AXPY<T>(n, 1., y, z);
  } else {
    this->template VCOPY<T>(n, y, z);
    this->template AXPY<T>(n, 1., x, z);
  }
441 442 443
#endif
}

T
tensor-tang 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
#endif
}

T
tensor-tang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

T
tensor-tang 已提交
471 472
template <>
template <typename T>
T
tensor-tang 已提交
473
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
474
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
475
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
476 477
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
478
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

T
tensor-tang 已提交
496 497 498 499
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
500
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
501 502 503 504 505 506 507 508 509 510
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

T
tensor-tang 已提交
511 512
template <>
template <typename T>
T
tensor-tang 已提交
513
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
514 515 516 517 518 519 520 521 522 523
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

J
Jacek Czaja 已提交
524 525 526 527 528
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
529
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
530
#else
J
Jacek Czaja 已提交
531
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
532 533 534 535 536 537 538
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

Y
Yu Yang 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
572 573 574
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
575 576 577 578 579
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N * head_number;
  int sub_width = K / head_number;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

  for (int i = 0; i < head_number; i++) {
    int sub_matA_offset = (transA == CblasNoTrans) ? i * (K / head_number)
                                                   : i * (K / head_number) * M;
    int sub_matB_offset = (transB == CblasNoTrans) ? i * (K / head_number) * N
                                                   : i * (K / head_number);
    int sub_matC_offset = i * N;
    for (int k = 0; k < batchCount; ++k) {
      a_array[k] = &A[k * strideA] + sub_matA_offset;
      b_array[k] = &B[k * strideB] + sub_matB_offset;
      c_array[k] = &C[k * M * head_number * N] + sub_matC_offset;
    }

    CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &sub_width,
                         &alpha, a_array.data(), &lda, b_array.data(), &ldb,
                         &beta, c_array.data(), &ldc, 1 /* group_count */,
                         &batchCount);
  }
}
#endif

T
tensor-tang 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}

Y
Yu Yang 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                           dim_a.width_, alpha, mat_a.data<T>(),
                           mat_b.data<T>(), beta, mat_out->data<T>());
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
    this->template BatchedGEMM<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be 4 matrix of
 * [6, 4]. The result of final matrix will be 4 matrix of [3, 4], i.e. [3, 16].
 *
 */
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMulWithHead(
    const framework::Tensor &mat_a, const MatDescriptor &dim_a,
    const framework::Tensor &mat_b, const MatDescriptor &dim_b, T alpha,
    int head_number, framework::Tensor *mat_out, T beta) const {
  PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
  PADDLE_ENFORCE_EQ(dim_a.width_ % head_number, 0);
  PADDLE_ENFORCE_GE(head_number, 1);
  PADDLE_ENFORCE_LE(head_number, dim_a.width_);
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset =
          dim_a.trans_ ? i * (dim_a.width_ / head_number) * dim_a.height_
                       : i * (dim_a.width_ / head_number);
      int sub_matB_offset =
          dim_b.trans_ ? i * (dim_b.height_ / head_number)
                       : i * (dim_b.height_ / head_number) * dim_b.width_;
      int sub_matC_offset = i * dim_b.width_;
      int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
      int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
      int ldc = head_number * dim_b.width_;

      this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                             dim_a.width_ / head_number, alpha,
                             mat_a.data<T>() + sub_matA_offset, lda,
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
    PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
                   dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);

    this->template BatchedGEMMWithHead<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_, head_number);
  }
}
#endif

Y
Use mkl  
Yu Yang 已提交
736 737 738 739 740 741 742 743 744 745 746
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
747

Y
Yihua Xu 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

761 762 763 764 765 766 767 768 769 770 771 772 773
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
#endif

Y
Yu Yang 已提交
774 775 776
}  // namespace math
}  // namespace operators
}  // namespace paddle