blas_impl.h 47.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
15 16 17
#ifdef PADDLE_WITH_MKLML
#include <mkl.h>
#endif
18

S
ShenLiang 已提交
19
#include <algorithm>
T
tensor-tang 已提交
20
#include <cmath>
T
tensor-tang 已提交
21
#include <limits>
Y
Yu Yang 已提交
22
#include <vector>
23

Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/platform/bfloat16.h"
26
#include "paddle/fluid/platform/complex.h"
Y
Yu Yang 已提交
27 28 29 30

namespace paddle {
namespace operators {
namespace math {
31 32 33 34 35 36 37 38 39 40 41 42 43
namespace detail {

template <typename T>
static void axpy(int n, const T alpha, const T *x, const int incx, T *y,
                 const int incy) {
  // Y = Y + alpha * X
  while (n-- > 0) {
    *y += alpha * *x;
    y = y + incy;
    x = x + incx;
  }
}
}  // namespace detail
Y
Yu Yang 已提交
44 45 46 47

template <typename T>
struct CBlas;

48 49 50 51
template <>
struct CBlas<int8_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
52 53
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
54 55 56
  }
};

57 58 59 60 61 62 63 64 65
template <>
struct CBlas<int16_t> {
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU, please check your code"));
  }
};

66 67
template <>
struct CBlas<platform::bfloat16> {
68 69 70 71 72
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    detail::axpy(args...);
  }

73 74 75 76 77 78 79 80
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Blas VCOPY do not supported on CPU with bfloat16,"
        " please check your code"));
  }
};

81
#ifdef PADDLE_WITH_MKLML
Y
Yu Yang 已提交
82 83
template <>
struct CBlas<float> {
Y
Yu Yang 已提交
84 85
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
86
    platform::dynload::cblas_sgemm(args...);
Y
Yu Yang 已提交
87
  }
Y
Yu Yang 已提交
88

T
tensor-tang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  template <typename... ARGS>
  static float *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_sgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_sgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_sgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_sgemm_free(args...);
  }

T
tensor-tang 已提交
109 110 111 112 113 114
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_sgemm(args...);
  }
#endif
T
tensor-tang 已提交
115

Y
Yu Yang 已提交
116 117
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
118 119 120 121 122 123 124 125 126 127 128 129 130
    platform::dynload::cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    platform::dynload::cblas_sgemv(args...);
  }

T
tensor-tang 已提交
131 132 133 134 135
  template <typename... ARGS>
  static float DOT(ARGS... args) {
    return platform::dynload::cblas_sdot(args...);
  }

T
tensor-tang 已提交
136 137 138 139 140
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_sscal(args...);
  }

J
Jacek Czaja 已提交
141 142 143 144 145
  template <typename... ARGS>
  static float ASUM(ARGS... args) {
    return platform::dynload::cblas_sasum(args...);
  }

146 147 148
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
    platform::dynload::cblas_sgemm_batch(args...);
Y
Yu Yang 已提交
149 150
  }

151 152
  template <typename... ARGS>
  static void VADD(ARGS... args) {
153 154
    platform::dynload::vsAdd(args...);
  }
T
tensor-tang 已提交
155

156 157 158 159 160
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vsSub(args...);
  }

T
tensor-tang 已提交
161 162 163 164
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vsMul(args...);
  }
T
tensor-tang 已提交
165

166 167 168 169 170
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vsDiv(args...);
  }

T
tensor-tang 已提交
171 172 173 174
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vsExp(args...);
  }
T
tensor-tang 已提交
175 176

  template <typename... ARGS>
T
tensor-tang 已提交
177
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
178 179 180 181 182 183 184
    platform::dynload::vsSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vsPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
185 186 187 188 189

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vsInv(args...);
  }
Y
Yihua Xu 已提交
190 191 192 193 194

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmsErf(args...);
  }
195
#if !defined(_WIN32)
196 197 198 199
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_scsrmm(args...);
  }
200
#endif
G
Guo Sheng 已提交
201 202 203 204 205

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_strsm(args...);
  }
206 207 208 209 210 211 212 213 214
};

template <>
struct CBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    platform::dynload::cblas_dgemm(args...);
  }

T
tensor-tang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  template <typename... ARGS>
  static double *GEMM_ALLOC(ARGS... args) {
    return platform::dynload::cblas_dgemm_alloc(args...);
  }

  template <typename... ARGS>
  static void GEMM_PACK(ARGS... args) {
    platform::dynload::cblas_dgemm_pack(args...);
  }

  template <typename... ARGS>
  static void GEMM_COMPUTE(ARGS... args) {
    platform::dynload::cblas_dgemm_compute(args...);
  }

  template <typename... ARGS>
  static void GEMM_FREE(ARGS... args) {
    platform::dynload::cblas_dgemm_free(args...);
  }

T
tensor-tang 已提交
235 236 237 238 239 240
#ifdef PADDLE_WITH_LIBXSMM
  template <typename... ARGS>
  static void SMM_GEMM(ARGS... args) {
    libxsmm_dgemm(args...);
  }
#endif
T
tensor-tang 已提交
241

242 243 244
  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    platform::dynload::cblas_daxpy(args...);
245 246 247 248
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
249
    platform::dynload::cblas_dcopy(args...);
250 251
  }

Y
Yu Yang 已提交
252 253
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
254
    platform::dynload::cblas_dgemv(args...);
Y
Yu Yang 已提交
255 256
  }

T
tensor-tang 已提交
257 258 259 260 261
  template <typename... ARGS>
  static double DOT(ARGS... args) {
    return platform::dynload::cblas_ddot(args...);
  }

T
tensor-tang 已提交
262 263 264 265 266
  template <typename... ARGS>
  static void SCAL(ARGS... args) {
    platform::dynload::cblas_dscal(args...);
  }

J
Jacek Czaja 已提交
267 268 269 270 271
  template <typename... ARGS>
  static double ASUM(ARGS... args) {
    return platform::dynload::cblas_dasum(args...);
  }

Y
Yu Yang 已提交
272 273
  template <typename... ARGS>
  static void GEMM_BATCH(ARGS... args) {
274 275 276 277 278 279 280
    platform::dynload::cblas_dgemm_batch(args...);
  }

  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vdAdd(args...);
  }
T
tensor-tang 已提交
281

282 283 284 285 286
  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vdSub(args...);
  }

T
tensor-tang 已提交
287 288 289 290
  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vdMul(args...);
  }
T
tensor-tang 已提交
291

292 293 294 295 296
  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vdDiv(args...);
  }

T
tensor-tang 已提交
297 298 299 300
  template <typename... ARGS>
  static void VEXP(ARGS... args) {
    platform::dynload::vdExp(args...);
  }
T
tensor-tang 已提交
301 302

  template <typename... ARGS>
T
tensor-tang 已提交
303
  static void VSQUARE(ARGS... args) {
T
tensor-tang 已提交
304 305 306 307 308 309 310
    platform::dynload::vdSqr(args...);
  }

  template <typename... ARGS>
  static void VPOW(ARGS... args) {
    platform::dynload::vdPowx(args...);
  }
Y
Use mkl  
Yu Yang 已提交
311 312 313 314 315

  template <typename... ARGS>
  static void VINV(ARGS... args) {
    platform::dynload::vdInv(args...);
  }
Y
Yihua Xu 已提交
316 317 318 319 320

  template <typename... ARGS>
  static void VMERF(ARGS... args) {
    platform::dynload::vmdErf(args...);
  }
321
#if !defined(_WIN32)
322 323 324 325
  template <typename... ARGS>
  static void CSRMM(ARGS... args) {
    platform::dynload::mkl_dcsrmm(args...);
  }
326
#endif
G
Guo Sheng 已提交
327 328 329 330 331

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    platform::dynload::cblas_dtrsm(args...);
  }
332 333
};

334
template <>
335
struct CBlas<platform::complex<float>> {
336
  template <typename... ARGS>
337 338 339
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
340 341 342
    platform::dynload::cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_ccopy(args...);
  }

  // the libmklml_intel.so paddle used has no vcAdd, vcSub,
  // vcMul, vcDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vcAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vcSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vcMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vcDiv(args...);
  }
  */

  template <typename... ARGS>
374 375 376
  static void VADD(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
377 378 379 380 381 382
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
383 384 385
  static void VSUB(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
386 387 388 389 390 391
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
392 393 394
  static void VMUL(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
395 396 397 398 399
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
400 401 402
  static void VDIV(int n, const paddle::platform::complex<float> *a,
                   const paddle::platform::complex<float> *b,
                   paddle::platform::complex<float> *y) {
403 404 405 406 407 408 409
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
410 411 412 413 414
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *X, int incx,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, int incy) {
415 416 417 418 419 420 421 422 423 424
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_cgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
425 426 427 428 429
                   paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, int lda,
                   const paddle::platform::complex<float> *B, int ldb,
                   paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, int ldc) {
430 431 432 433 434 435 436 437 438 439
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_cgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
440 441 442 443 444 445
                         paddle::platform::complex<float> *alpha,
                         const paddle::platform::complex<float> **A,
                         const int *lda,
                         const paddle::platform::complex<float> **B,
                         const int *ldb, paddle::platform::complex<float> *beta,
                         paddle::platform::complex<float> **C, const int *ldc,
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_cgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_cgemm_batch(args...);
  }
};

template <>
463
struct CBlas<platform::complex<double>> {
464
  template <typename... ARGS>
465 466 467
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
468 469 470
    platform::dynload::cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    platform::dynload::cblas_zcopy(args...);
  }

  // the libmklml_intel.so paddle used has no vzAdd, vzSub,
  // vzMul, vzDiv apis before rebuild from source
  // so replace with the raw operator methods
  /*
  template <typename... ARGS>
  static void VADD(ARGS... args) {
    platform::dynload::vzAdd(args...);
  }

  template <typename... ARGS>
  static void VSUB(ARGS... args) {
    platform::dynload::vzSub(args...);
  }

  template <typename... ARGS>
  static void VMUL(ARGS... args) {
    platform::dynload::vzMul(args...);
  }

  template <typename... ARGS>
  static void VDIV(ARGS... args) {
    platform::dynload::vzDiv(args...);
  }
  */

  template <typename... ARGS>
502 503 504
  static void VADD(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
505 506 507 508 509 510
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] + b[i];
    }
  }

  template <typename... ARGS>
511 512 513
  static void VSUB(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
514 515 516 517 518 519
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] - b[i];
    }
  }

  template <typename... ARGS>
520 521 522
  static void VMUL(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
523 524 525 526 527
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] * b[i];
    }
  }
  template <typename... ARGS>
528 529 530
  static void VDIV(int n, const paddle::platform::complex<double> *a,
                   const paddle::platform::complex<double> *b,
                   paddle::platform::complex<double> *y) {
531 532 533 534 535 536 537
    for (int i = 0; i < n; ++i) {
      y[i] = a[i] / b[i];
    }
  }

  template <typename... ARGS>
  static void GEMV(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans, int M, int N,
538 539 540 541 542
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *X, int incx,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, int incy) {
543 544 545 546 547 548 549 550 551 552
    const void *a_ = (const void *)(A);
    const void *x_ = (const void *)(X);
    void *y_ = static_cast<void *>(Y);
    platform::dynload::cblas_zgemv(layout, trans, M, N, &alpha, a_, lda, x_,
                                   incx, &beta, y_, incy);
  }

  template <typename... ARGS>
  static void GEMM(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE trans_a,
                   CBLAS_TRANSPOSE trans_b, int M, int N, int K,
553 554 555 556 557
                   paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, int lda,
                   const paddle::platform::complex<double> *B, int ldb,
                   paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, int ldc) {
558 559 560 561 562 563 564 565 566 567
    const void *a_ = (const void *)(A);
    const void *b_ = (const void *)(B);
    void *c_ = static_cast<void *>(C);
    platform::dynload::cblas_zgemm(layout, trans_a, trans_b, M, N, K, &alpha,
                                   a_, lda, b_, ldb, &beta, c_, ldc);
  }

  template <typename... ARGS>
  static void GEMM_BATCH(CBLAS_LAYOUT layout, CBLAS_TRANSPOSE *trans_a,
                         CBLAS_TRANSPOSE *trans_b, int *M, int *N, int *K,
568 569 570 571 572 573 574
                         paddle::platform::complex<double> *alpha,
                         const paddle::platform::complex<double> **A,
                         const int *lda,
                         const paddle::platform::complex<double> **B,
                         const int *ldb,
                         paddle::platform::complex<double> *beta,
                         paddle::platform::complex<double> **C, const int *ldc,
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
                         int group_count, int *group_size) {
    const void **A_void = (const void **)(&(*A));
    const void **B_void = (const void **)(&(*B));
    void **C_void = reinterpret_cast<void **>(C);

    platform::dynload::cblas_zgemm_batch(layout, trans_a, trans_b, M, N, K,
                                         alpha, A_void, lda, B_void, ldb, beta,
                                         C_void, ldc, group_count, group_size);
  }

  template <typename... ARGS>
  static void GEMM_EX(ARGS... args) {
    platform::dynload::cblas_zgemm_batch(args...);
  }
};

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
#else

template <>
struct CBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_sgemm(args...);
  }

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_saxpy(args...);
  }

  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_scopy(args...);
  }

  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_sgemv(args...);
Y
Yu Yang 已提交
613
  }
G
Guo Sheng 已提交
614 615 616 617 618

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_strsm(args...);
  }
Y
Yu Yang 已提交
619 620 621 622
};

template <>
struct CBlas<double> {
Y
Yu Yang 已提交
623 624 625 626
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    cblas_dgemm(args...);
  }
Y
Yu Yang 已提交
627 628 629 630 631 632

  template <typename... ARGS>
  static void AXPY(ARGS... args) {
    cblas_daxpy(args...);
  }

633 634 635 636 637
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_dcopy(args...);
  }

Y
Yu Yang 已提交
638 639 640 641
  template <typename... ARGS>
  static void GEMV(ARGS... args) {
    cblas_dgemv(args...);
  }
G
Guo Sheng 已提交
642 643 644 645 646

  template <typename... ARGS>
  static void TRSM(ARGS... args) {
    cblas_dtrsm(args...);
  }
Y
Yu Yang 已提交
647
};
648 649

template <>
650
struct CBlas<platform::complex<float>> {
651 652 653 654 655 656
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_ccopy(args...);
  }

  template <typename... ARGS>
657 658 659
  static void AXPY(int n, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *X, const int incX,
                   paddle::platform::complex<float> *Y, const int incY) {
660 661 662 663 664 665
    cblas_caxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
666 667 668 669 670
                   const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *X, const int incX,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *Y, const int incY) {
671 672 673 674 675 676
    cblas_cgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
677 678 679 680 681
                   const int K, const paddle::platform::complex<float> alpha,
                   const paddle::platform::complex<float> *A, const int lda,
                   const paddle::platform::complex<float> *B, const int ldb,
                   const paddle::platform::complex<float> beta,
                   paddle::platform::complex<float> *C, const int ldc) {
682 683 684 685 686 687
    cblas_cgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
};

template <>
688
struct CBlas<platform::complex<double>> {
689 690 691 692 693 694
  template <typename... ARGS>
  static void VCOPY(ARGS... args) {
    cblas_zcopy(args...);
  }

  template <typename... ARGS>
695 696 697
  static void AXPY(int n, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *X, const int incX,
                   paddle::platform::complex<double> *Y, const int incY) {
698 699 700 701 702 703
    cblas_zaxpy(n, &alpha, X, incX, Y, incY);
  }

  template <typename... ARGS>
  static void GEMV(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const int M, const int N,
704 705 706 707 708
                   const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *X, const int incX,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *Y, const int incY) {
709 710 711 712 713 714
    cblas_zgemv(layout, TransA, M, N, &alpha, A, lda, X, incX, &beta, Y, incY);
  }

  template <typename... ARGS>
  static void GEMM(const CBLAS_LAYOUT layout, const CBLAS_TRANSPOSE TransA,
                   const CBLAS_TRANSPOSE TransB, const int M, const int N,
715 716 717 718 719
                   const int K, const paddle::platform::complex<double> alpha,
                   const paddle::platform::complex<double> *A, const int lda,
                   const paddle::platform::complex<double> *B, const int ldb,
                   const paddle::platform::complex<double> beta,
                   paddle::platform::complex<double> *C, const int ldc) {
720 721 722 723 724
    cblas_zgemm(layout, TransA, TransB, M, N, K, &alpha, A, lda, B, ldb, &beta,
                C, ldc);
  }
};

725
#endif
T
tensor-tang 已提交
726

Y
Yu Yang 已提交
727 728
template <>
struct CBlas<platform::float16> {
729 730 731 732 733
  static void GEMM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM not supported on CPU, please check your code"));
  }

T
tensor-tang 已提交
734
  static void SMM_GEMM(...) {
735 736
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SMM_GEMM not supported on CPU, please check your code"));
T
tensor-tang 已提交
737
  }
738 739 740
  static void VMUL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VMUL not supported on CPU, please check your code"));
T
tensor-tang 已提交
741
  }
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  static void VEXP(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VEXP not supported on CPU, please check your code"));
  }
  static void VSQUARE(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VSQUARE not supported on CPU, please check your code"));
  }
  static void VPOW(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 VPOW not supported on CPU, please check your code"));
  }
  static void DOT(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 DOT not supported on CPU, please check your code"));
  };
  static void SCAL(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 SCAL not supported on CPU, please check your code"));
  };
  static void ASUM(...) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 ASUM not supported on CPU, please check your code"));
  };
Y
Yu Yang 已提交
766 767
#ifdef PADDLE_WITH_MKLML
  static void GEMM_BATCH(...) {
768 769
    PADDLE_THROW(platform::errors::Unimplemented(
        "float16 GEMM_BATCH not supported on CPU, please check your code"));
Y
Yu Yang 已提交
770 771
  }
#endif
Y
Yu Yang 已提交
772
};
T
tensor-tang 已提交
773

T
tensor-tang 已提交
774
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
template <>
template <typename T>
T *Blas<platform::CPUDeviceContext>::GEMM_ALLOC(const CBLAS_IDENTIFIER id,
                                                const int M, const int N,
                                                const int K) const {
  return CBlas<T>::GEMM_ALLOC(id, M, N, K);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_PACK(const CBLAS_IDENTIFIER id,
                                                 const CBLAS_TRANSPOSE trans,
                                                 int M, int N, int K,
                                                 const T alpha, const T *src,
                                                 const int ld, T *dst) const {
  CBlas<T>::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_COMPUTE(
    int transA, int transB, int M, int N, int K, const T *A, const int lda,
    const T *B, const int ldb, T beta, T *C, const int ldc) const {
  CBlas<T>::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb,
                         beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM_FREE(T *data) const {
  CBlas<T>::GEMM_FREE(data);
}
T
tensor-tang 已提交
807
#endif
T
tensor-tang 已提交
808

T
tensor-tang 已提交
809 810 811 812 813 814 815 816 817
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            const T *B, T beta, T *C) const {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
T
tensor-tang 已提交
818 819
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
820 821 822 823
}

template <>
template <typename T>
Y
Yu Yang 已提交
824 825 826 827
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
T
tensor-tang 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
  CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
                 transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
                 lda, B, ldb, beta, C, ldc);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
                                            CBLAS_TRANSPOSE transB, int M,
                                            int N, int K, T alpha, const T *A,
                                            int lda, const T *B, int ldb,
                                            T beta, T *C, int ldc) const {
  CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
                 beta, C, ldc);
Y
Yu Yang 已提交
842 843
}

Y
Yu Yang 已提交
844 845 846 847 848 849 850 851 852
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
                                 const framework::Tensor &mat_b, bool trans_b,
                                 T alpha, framework::Tensor *mat_out,
                                 T beta) const {
  auto dim_a = mat_a.dims();
  auto dim_b = mat_b.dims();
  auto dim_out = mat_out->dims();
853 854 855 856 857 858 859 860 861 862 863 864
  PADDLE_ENFORCE_EQ(
      dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, true,
      platform::errors::InvalidArgument(
          "The input and output of matmul should be matrix, the dim size must "
          "be 2,"
          "but received dim size input_a:%d, input_b:%d, output:%d",
          dim_a.size(), dim_b.size(), dim_out.size()));
  PADDLE_ENFORCE_EQ(
      mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(), true,
      platform::errors::InvalidArgument("The places of matrices in the matmul "
                                        "should be same, please check your "
                                        "code."));
Y
Yu Yang 已提交
865 866 867 868 869 870 871 872 873 874 875 876

  int M = dim_out[0];
  int N = dim_out[1];
  int K = !trans_a ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;

  this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
             beta, mat_out->data<T>());
}

Y
Yu Yang 已提交
877 878 879 880 881 882 883
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
                                            T *y) const {
  CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}

884 885 886 887 888 889 890 891 892 893 894 895 896
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
  CBlas<T>::VCOPY(n, x, 1, y, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VADD(n, x, y, z);
#else
897
  if (x == z) {
898
    this->template AXPY<T>(n, (T)(1.), y, z);
899 900
  } else {
    this->template VCOPY<T>(n, y, z);
901
    this->template AXPY<T>(n, (T)(1.), x, z);
902
  }
903 904 905
#endif
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VSUB(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VSUB(n, x, y, z);
#else
  // try to find if openblas support vsub
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
#endif
}

T
tensor-tang 已提交
920 921 922 923 924 925 926 927 928 929
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMUL(n, x, y, z);
#else
  // try to find if openblas support vmul
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
930 931 932 933 934 935 936 937 938 939 940 941 942 943
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VDIV(int n, const T *x, const T *y,
                                            T *z) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VDIV(n, x, y, z);
#else
  // try to find if openblas support vdiv
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] / y[i];
T
tensor-tang 已提交
944 945 946 947
  }
#endif
}

T
tensor-tang 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VEXP(n, x, y);
#else
  // try to find if openblas support vexp
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
#endif
}

T
tensor-tang 已提交
961 962
template <>
template <typename T>
T
tensor-tang 已提交
963
void Blas<platform::CPUDeviceContext>::VSQUARE(int n, const T *x, T *y) const {
T
tensor-tang 已提交
964
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
965
  CBlas<T>::VSQUARE(n, x, y);
T
tensor-tang 已提交
966 967
#else
  for (int i = 0; i < n; ++i) {
T
tensor-tang 已提交
968
    y[i] = x[i] * x[i];
T
tensor-tang 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
  }
#endif
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VPOW(int n, const T *x, T a,
                                            T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VPOW(n, x, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::pow(x[i], a);
  }
#endif
}

T
tensor-tang 已提交
986 987 988 989
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
990
  return CBlas<T>::DOT(n, x, 1, y, 1);
T
tensor-tang 已提交
991 992 993 994 995 996 997 998 999 1000
#else
  // try to find if openblas support cblas_dot
  T sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i] * y[i];
  }
  return sum;
#endif
}

T
tensor-tang 已提交
1001 1002
template <>
template <typename T>
T
tensor-tang 已提交
1003
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
T
tensor-tang 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::SCAL(n, a, x, 1);
#else
  // try to find if openblas support cblas_scal
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
#endif
}

J
Jacek Czaja 已提交
1014 1015 1016 1017 1018
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::ASUM(int n, T *x, int inc) const {
  auto sum = static_cast<T>(0.0);
#ifdef PADDLE_WITH_MKLML
1019
  sum = CBlas<T>::ASUM(n, x, inc);
J
Jacek Czaja 已提交
1020
#else
J
Jacek Czaja 已提交
1021
  // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum
J
Jacek Czaja 已提交
1022 1023 1024 1025 1026 1027 1028
  for (int c = 0; c < n; ++c) {
    sum += x[c];
  }
#endif
  return sum;
}

Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
                                            const T *A, const T *B, T beta,
                                            T *C) const {
  CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
  CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB) const {
1044 1045 1046 1047 1048 1049
  PADDLE_ENFORCE_NOT_NULL(
      A, platform::errors::InvalidArgument("Pointer A should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      B, platform::errors::InvalidArgument("Pointer B should not be null."));
  PADDLE_ENFORCE_NOT_NULL(
      C, platform::errors::InvalidArgument("Pointer C should not be null."));
Y
Yu Yang 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
#ifdef PADDLE_WITH_MKLML
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }

  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                       a_array.data(), &lda, b_array.data(), &ldb, &beta,
                       c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
Y
yuyang18 已提交
1068 1069 1070
    auto *Ak = &A[k * strideA];
    auto *Bk = &B[k * strideB];
    auto *Ck = &C[k * M * N];
Y
Yu Yang 已提交
1071 1072 1073 1074 1075
    this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
  }
#endif
}

S
ShenLiang 已提交
1076 1077 1078 1079 1080 1081
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
    T alpha, const T **A, const T **B, T beta, T **C, int batchCount) const {
#ifdef PADDLE_WITH_MKLML
W
wanghuancoder 已提交
1082 1083 1084
  const int lda = (std::max)((transA == CblasNoTrans) ? K : M, 1);
  const int ldb = (std::max)((transB == CblasNoTrans) ? N : K, 1);
  const int ldc = (std::max)(N, 1);
S
ShenLiang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, A,
                       &lda, B, &ldb, &beta, C, &ldc, 1 /* group_count */,
                       &batchCount);
#else
  for (int k = 0; k < batchCount; ++k) {
    this->template GEMM<T>(transA, transB, M, N, K, alpha, A[k], B[k], beta,
                           C[k]);
  }
#endif
}

1096 1097
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)  // @{ Group Blas MKLML: BatchedGEMMWithHead
1098 1099 1100
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMMWithHead(
1101 1102 1103 1104 1105 1106
    CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2,
    int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
    int64_t strideA, int64_t strideB, int64_t head_number,
    bool split_b_vertical) const {
  int lda = (transA == CblasNoTrans) ? W1 : H1;
  int ldb = (transB == CblasNoTrans) ? W2 : H2;
1107 1108 1109 1110
  auto a_array = std::vector<const T *>(batchCount);
  auto b_array = std::vector<const T *>(batchCount);
  auto c_array = std::vector<T *>(batchCount);

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  if (split_b_vertical) {
    int ldc = W2;
    int sub_width = W2 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W2 / head_number)
                                : i * (W2 / head_number) * H2;
      int sub_matC_offset = i * W2 / head_number;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width,
                           &H2, &alpha, a_array.data(), &lda, b_array.data(),
                           &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
1133 1134
    }

1135
  } else {
1136 1137 1138 1139 1140 1141 1142
    PADDLE_ENFORCE_EQ(
        W1, H2,
        platform::errors::InvalidArgument(
            "The fisrt matrix width should be same as second matrix height,"
            "but received fisrt matrix width %d"
            ", second matrix height %d",
            W1, H2));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    int ldc = W2 * head_number;
    int sub_width = W1 / head_number;

    for (int i = 0; i < head_number; i++) {
      int sub_matA_offset = (transA == CblasNoTrans)
                                ? i * (W1 / head_number)
                                : i * (W1 / head_number) * H1;
      int sub_matB_offset = (transB == CblasNoTrans)
                                ? i * (W1 / head_number) * W2
                                : i * (W1 / head_number);
      int sub_matC_offset = i * W2;
      for (int k = 0; k < batchCount; ++k) {
        a_array[k] = &A[k * strideA] + sub_matA_offset;
        b_array[k] = &B[k * strideB] + sub_matB_offset;
        c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset;
      }

      CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2,
                           &sub_width, &alpha, a_array.data(), &lda,
                           b_array.data(), &ldb, &beta, c_array.data(), &ldc,
                           1 /* group_count */, &batchCount);
    }
1165 1166
  }
}
1167
#endif  // @} End Group Blas MKLML: BatchedGEMMWithHead
1168

T
tensor-tang 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
                                 const T *A, const T *B, T *C) const {
  this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                         static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
                         N);
}

template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
                                              const int K, const T *A,
                                              const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
  // Refer to https://github.com/hfp/libxsmm/blob/master/README.md
  // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;

  // Since the matrix is very small,
  // so the unit of calculation is already very fast,
  // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
  // use xsmm directly.
  // Note: SMM use ColMajor
  const char transa = 'N';
  const char transb = 'N';
  const T alpha = static_cast<T>(1);
  const T beta = static_cast<T>(0);
  CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
                     C, &N);
  return;
#endif

  CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
                 static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}

Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210 1211
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
                                 const MatDescriptor &dim_a,
                                 const framework::Tensor &mat_b,
                                 const MatDescriptor &dim_b, T alpha,
                                 framework::Tensor *mat_out, T beta) const {
1212 1213 1214 1215 1216 1217 1218 1219
  PADDLE_ENFORCE_EQ(
      dim_a.width_, dim_b.height_,
      platform::errors::InvalidArgument(
          "The fisrt matrix width should be same as second matrix height,"
          "but received fisrt matrix width %d"
          ", second matrix height %d",
          dim_a.width_, dim_b.height_));

Y
Yu Yang 已提交
1220 1221 1222 1223 1224 1225 1226
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
    this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
                           dim_a.width_, alpha, mat_a.data<T>(),
                           mat_b.data<T>(), beta, mat_out->data<T>());
  } else {
1227 1228 1229 1230 1231 1232 1233 1234
    PADDLE_ENFORCE_EQ(
        dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
            dim_b.batch_size_ == 0,
        true, platform::errors::InvalidArgument(
                  "dim_a.batch_size should be equal to dim_b.batch_size, or "
                  "one of dim_a.batch_size and dim_b.batch_size should be 0. "
                  "But got dim_a.batch_size = %d, dim_b.batch_size = %d.",
                  dim_a.batch_size_, dim_b.batch_size_));
Y
Yu Yang 已提交
1235 1236 1237 1238 1239 1240 1241
    this->template BatchedGEMM<T>(
        transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
        mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
        dim_a.stride_, dim_b.stride_);
  }
}
1242

1243 1244 1245
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
// @{ Group Blas MKLML: MatMulWithHead
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Multiple two matrixes with multiple heads
 *
 * A new parameter, i.e head_number is added compared to normal MatMul.
 * The head_number describes the number of heads a matrix is vertically
 * split.
 *
 * When user calls this API, the multiplication of two big matrixes is split
 * into multiplication of several (head_number_) small matrixes. e.g. if Mat A
 * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as
T
tianshuo78520a 已提交
1256 1257
 * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be
 * (horizontally) split as 4 matrix of [6, 4]. The result of final matrix
1258 1259
 * will be 4 matrix of [3, 4], i.e. [3, 16].
 * Another example is A is [3, 8], B is [2, 16], head_number is 4. In this
T
tianshuo78520a 已提交
1260
 * case, A will be split as [3, 2], B will be (vertically) split as
1261
 * [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16]
1262 1263 1264
 */
template <typename DeviceContext>
template <typename T>
1265 1266 1267 1268 1269 1270 1271
void Blas<DeviceContext>::MatMulWithHead(const framework::Tensor &mat_a,
                                         const MatDescriptor &dim_a,
                                         const framework::Tensor &mat_b,
                                         const MatDescriptor &dim_b, T alpha,
                                         int head_number,
                                         framework::Tensor *mat_out, T beta,
                                         bool mat_b_split_vertical) const {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
  PADDLE_ENFORCE_EQ(
      dim_a.width_ % head_number, 0,
      platform::errors::InvalidArgument(
          "The first input width must be some times the head number"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
  PADDLE_ENFORCE_GE(head_number, 1,
                    platform::errors::InvalidArgument(
                        "The head number should be greater equal 1,"
                        "but received head number %d",
                        head_number));
  PADDLE_ENFORCE_LE(
      head_number, dim_a.width_,
      platform::errors::InvalidArgument(
          "The head number should be less equal first input width,"
          "but received first input width %d"
          ",  head_number %d",
          dim_a.width_, head_number));
1291 1292 1293
  CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;

1294
  if (mat_b_split_vertical) {
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    PADDLE_ENFORCE_EQ(
        dim_b.height_, dim_a.width_ / head_number,
        platform::errors::InvalidArgument(
            "The second input height should be equal than first input width,"
            "but received second input height %d, first input width %d",
            dim_b.height_, dim_a.width_ / head_number));
    PADDLE_ENFORCE_EQ(
        dim_a.width_ % head_number, 0,
        platform::errors::InvalidArgument(
            "The second input width should be some times the head number"
            "but received second input width %d"
            ",  head_number %d",
            dim_b.width_, head_number));
1308 1309
  }

1310
  if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_;
    int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_;
    int sub_matA_offset;
    int sub_matB_offset;
    int sub_matC_offset;
    int sub_mat_M = dim_a.height_;
    int sub_mat_N;
    int sub_mat_K;
    int ldc;

1321
    for (int i = 0; i < head_number; i++) {
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
      sub_matA_offset = dim_a.trans_
                            ? i * (dim_a.width_ / head_number) * dim_a.height_
                            : i * (dim_a.width_ / head_number);
      if (mat_b_split_vertical) {
        sub_matB_offset = dim_b.trans_
                              ? i * (dim_b.width_ / head_number) * dim_b.height_
                              : i * (dim_b.width_ / head_number);
        sub_matC_offset = i * dim_b.width_ / head_number;

        sub_mat_N = dim_b.width_ / head_number;
        sub_mat_K = dim_b.height_;

        ldc = dim_b.width_;
      } else {
        sub_matB_offset =
            dim_b.trans_ ? i * (dim_b.height_ / head_number)
                         : i * (dim_b.height_ / head_number) * dim_b.width_;
        sub_matC_offset = i * dim_b.width_;

        sub_mat_N = dim_b.width_;
        sub_mat_K = dim_a.width_ / head_number;

        ldc = head_number * dim_b.width_;
      }

      this->template GEMM<T>(transA, transB, sub_mat_M, sub_mat_N, sub_mat_K,
                             alpha, mat_a.data<T>() + sub_matA_offset, lda,
1349 1350 1351 1352
                             mat_b.data<T>() + sub_matB_offset, ldb, beta,
                             mat_out->data<T>() + sub_matC_offset, ldc);
    }
  } else {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    PADDLE_ENFORCE_EQ(
        (dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 ||
         dim_b.batch_size_ == 0),
        true,
        platform::errors::InvalidArgument(
            "The first input batch size should be equal than second input,"
            "either two input batch size is 0, but received first input batch "
            "size"
            " %d, second input batch size %d",
            dim_a.batch_size_, dim_b.batch_size_));
1363 1364

    this->template BatchedGEMMWithHead<T>(
1365 1366 1367
        transA, transB, dim_a.width_, dim_a.height_, dim_b.width_,
        dim_b.height_, alpha, mat_a.data<T>(), mat_b.data<T>(), beta,
        mat_out->data<T>(),
1368
        dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
1369
        dim_a.stride_, dim_b.stride_, head_number, mat_b_split_vertical);
1370 1371
  }
}
1372
#endif  // @} End Group Blas MKLML: MatMulWithHead
1373

Y
Use mkl  
Yu Yang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VINV(n, a, y);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = 1.0 / a[i];
  }
#endif
}
Y
Yu Yang 已提交
1385

Y
Yihua Xu 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VMERF(int n, const T *a, T *y,
                                             int64_t mode) const {
#ifdef PADDLE_WITH_MKLML
  CBlas<T>::VMERF(n, a, y, mode);
#else
  for (int i = 0; i < n; ++i) {
    y[i] = std::erf(a[i]);
  }
#endif
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::CSRMM(
    const char *transa, const int *m, const int *n, const int *k,
    const T *alpha, const char *matdescra, const T *val, const int *indx,
    const int *pntrb, const int *pntre, const T *b, const int *ldb,
    const T *beta, T *c, const int *ldc) const {
  CBlas<T>::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b,
                  ldb, beta, c, ldc);
}
#endif

G
Guo Sheng 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo,
                                            CBLAS_TRANSPOSE transA,
                                            CBLAS_DIAG diag, int M, int N,
                                            T alpha, const T *A, int lda, T *B,
                                            int ldb) const {
  CBlas<T>::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda,
                 B, ldb);
}

Y
Yu Yang 已提交
1423 1424 1425
}  // namespace math
}  // namespace operators
}  // namespace paddle