nn.py 117.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import nn
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator
M
minqiyang 已提交
25
from ..param_attr import ParamAttr
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
27 28
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
29
import numpy as np
30
import numbers
31
import logging
32

33
__all__ = [
34 35 36
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
37
]
M
minqiyang 已提交
38 39


X
Xin Pan 已提交
40
class Conv2D(layers.Layer):
41
    """
42 43
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
44 45 46
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
47 48 49
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
50
    and W is the width of the filter. If the groups is greater than 1,
51
    C will equal the number of input feature map divided by the groups.
52
    Please refer to UFLDL's `convolution
53
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
54
    for more details.
55 56 57 58 59 60 61 62
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

63
        Out = \\sigma (W \\ast X + b)
64 65 66

    Where:

67 68
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
69
    * :math:`\\ast`: Convolution operation.
70
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

93
    Parameters:
94
        num_channels(int): The number of channels in the input image.
95
        num_filters(int): The number of filter. It is as same as the output
96 97
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
98 99
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
100
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
101
            contain two integers, (stride_H, stride_W). Otherwise, the
102 103
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
104
            contain two integers, (padding_H, padding_W). Otherwise, the
105 106
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
107
            contain two integers, (dilation_H, dilation_W). Otherwise, the
108 109
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
110 111 112
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
113 114
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
115 116 117 118
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
119
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
120 121 122 123
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
124 125 126 127 128
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
129

130 131 132 133
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
134

135 136 137
    Returns:
        None
    
138
    Raises:
139
        ValueError: if ``use_cudnn`` is not a bool value.
140 141 142

    Examples:
        .. code-block:: python
L
lujun 已提交
143

144 145 146 147 148
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

149
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
150
          with fluid.dygraph.guard():
151
              conv2d = Conv2D(3, 2, 3)
152 153
              data = to_variable(data)
              conv = conv2d(data)
154 155 156

    """

M
minqiyang 已提交
157
    def __init__(self,
158
                 num_channels,
M
minqiyang 已提交
159 160 161 162 163 164 165 166
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
167 168 169
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
170
        assert param_attr is not False, "param_attr should not be False here."
171 172
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
173 174 175 176
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
177
        self._act = act
M
minqiyang 已提交
178 179 180
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
181 182 183 184 185
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
186

187 188 189 190 191
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
192

193
        self._num_channels = num_channels
194 195
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
196
        else:
197
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
198
                raise ValueError("num_channels must be divisible by groups.")
199 200
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
201
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
202 203

        def _get_default_param_initializer():
204 205
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
206 207 208
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

209
        self.weight = self.create_parameter(
210
            attr=self._param_attr,
M
minqiyang 已提交
211 212 213 214
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

215
        self.bias = self.create_parameter(
216 217
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
218 219
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
220 221

    def forward(self, input):
222 223 224 225 226 227 228 229 230 231 232
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
233 234
        inputs = {
            'Input': [input],
235
            'Filter': [self.weight],
236 237 238 239 240 241 242 243 244
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
M
minqiyang 已提交
245 246 247
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
248 249 250 251
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
252
                'Filter': self.weight,
M
minqiyang 已提交
253
            },
M
minqiyang 已提交
254
            outputs={"Output": pre_bias},
255
            attrs=attrs)
M
minqiyang 已提交
256

257
        if self.bias is not None:
258 259 260 261 262
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
263
                        'Y': [self.bias]},
264 265 266 267
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
268

L
lujun 已提交
269
        # Currently, we don't support inplace in dygraph mode
270
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
271 272


L
lujun 已提交
273
class Conv3D(layers.Layer):
274 275 276 277 278
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
279 280
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
281 282 283 284 285 286 287 288 289 290 291 292 293 294
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
295
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

321
    Parameters:
322
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
323
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
324
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
325
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
326 327 328
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
329
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
330 331
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
332
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
333 334
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
335
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
336 337
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
338 339 340
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
341 342
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
343 344 345
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
346 347
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
348 349 350
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
351 352 353 354 355
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
356
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
357

D
DuYao 已提交
358 359 360 361
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
362

363
    Returns:
D
DuYao 已提交
364
        None.
365 366 367 368 369 370 371 372

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

373 374 375 376 377 378
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
379
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
380 381
              ret = conv3d(fluid.dygraph.base.to_variable(data))

382 383
    """

L
lujun 已提交
384
    def __init__(self,
385
                 num_channels,
L
lujun 已提交
386 387 388 389 390 391 392 393 394
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
395 396
                 act=None,
                 dtype='float32'):
L
lujun 已提交
397
        assert param_attr is not False, "param_attr should not be False here."
398 399
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
400 401 402
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
403
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
404 405
        self._act = act
        self._use_cudnn = use_cudnn
406 407 408 409
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
410
        self._dtype = dtype
411 412

        if self._groups is None:
413
            num_filter_channels = self._num_channels
L
lujun 已提交
414
        else:
415
            if self._num_channels % self._groups != 0:
L
lujun 已提交
416
                raise ValueError("num_channels must be divisible by groups.")
417
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
418

419 420
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
421 422 423

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
424
                2] * self._num_channels
L
lujun 已提交
425 426 427
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

428
        self.weight = self.create_parameter(
429
            attr=self._param_attr,
L
lujun 已提交
430 431 432 433
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

434
        self.bias = self.create_parameter(
435 436
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
437 438 439 440 441 442 443 444
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
445
            type='conv3d',
L
lujun 已提交
446 447
            inputs={
                'Input': input,
448
                'Filter': self.weight,
L
lujun 已提交
449 450 451 452 453 454 455 456 457 458 459
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

460
        if self.bias is not None:
461 462 463 464 465
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
466
                        'Y': [self.bias]},
467 468 469 470
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
471 472 473 474 475

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
541

542
    Parameters:
543
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
544 545
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
546
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
547
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
548
            Otherwise, the filter will be a square.
D
DuYao 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
564
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
565 566
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
567 568 569 570
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
571 572
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
573 574
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
575 576
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
577 578 579
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
580 581 582 583 584 585 586
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
587

D
DuYao 已提交
588 589 590 591
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
592

L
lujun 已提交
593
    Returns:
D
DuYao 已提交
594
        None.
L
lujun 已提交
595 596 597 598 599 600 601 602

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

603 604 605 606 607 608
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
609
                    num_channels=3,
610 611 612 613 614
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
615 616
    """

L
lujun 已提交
617
    def __init__(self,
618
                 num_channels,
L
lujun 已提交
619
                 num_filters,
620
                 filter_size,
L
lujun 已提交
621 622 623 624 625 626 627 628
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
629 630
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
631 632 633 634 635 636 637
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
638
        self._num_channels = num_channels
L
lujun 已提交
639 640 641 642 643 644
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
645
        self._dtype = dtype
L
lujun 已提交
646

647 648
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
649

650 651
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
652
        self.weight = self.create_parameter(
L
lujun 已提交
653 654
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
655
            self.bias = self.create_parameter(
L
lujun 已提交
656 657 658 659 660 661 662 663 664 665 666
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
667
                    'Filter': [self.weight]},
L
lujun 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
683
                        'Y': [self.bias]},
L
lujun 已提交
684 685 686 687 688 689 690 691 692
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
693
class Pool2D(layers.Layer):
694
    """
695 696 697 698 699
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
700 701
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

747
    Parameters:
748
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
749
            it must contain two integers, (pool_size_Height, pool_size_Width).
750 751 752 753
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
754
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
755 756 757
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
758
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
759 760 761 762 763 764 765
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
766 767

    Returns:
768
        None
769 770 771 772 773 774 775 776 777 778

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
779
          import paddle.fluid as fluid
780 781
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
782 783

          with fluid.dygraph.guard():
784
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
785
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
786 787 788
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
789
             pool2d_res = pool2d(to_variable(data))
790 791 792

    """

M
minqiyang 已提交
793 794 795 796 797 798 799 800
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
801
                 exclusive=True):
M
minqiyang 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

815
        super(Pool2D, self).__init__()
M
minqiyang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
829 830 831 832 833 834 835 836
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

837 838 839 840 841 842 843 844 845 846 847 848 849
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
850 851
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
852 853 854
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
855
            outputs={"Out": pool_out},
856
            attrs=attrs)
M
minqiyang 已提交
857
        return pool_out
M
minqiyang 已提交
858 859


S
songyouwei 已提交
860 861 862 863 864 865 866 867 868 869
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

870
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
930
        if in_dygraph_mode():
931 932
            pre_bias = core.ops.mul(input, self.weight, 'x_num_col_dims',
                                    len(input.shape) - 1, 'y_num_col_dims', 1)
933 934 935 936 937 938

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
939 940 941 942 943
        attrs = {
            "x_num_col_dims": len(input.shape) - 1,
            "y_num_col_dims": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}
944

S
songyouwei 已提交
945 946
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
947
            type="mul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
962
class BatchNorm(layers.Layer):
963
    """
964 965 966 967 968
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
969 970 971 972
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

973 974 975
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
976 977 978 979 980 981 982 983

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

984 985
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
986 987 988

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
989 990 991 992 993 994
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
995

996 997
    The normalization function formula is as follows:
 
998 999 1000
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1001 1002 1003 1004 1005 1006
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1007

1008
    Parameters:
1009
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1010
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1011 1012 1013 1014
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1015 1016 1017
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1018
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1019 1020 1021
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1022 1023 1024 1025 1026 1027
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1028 1029
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1030
        use_global_stats(bool, optional): Whether to use global mean and
1031 1032 1033
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1034 1035 1036 1037
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1038 1039

    Returns:
1040
        None
1041 1042 1043

    Examples:
        .. code-block:: python
L
lujun 已提交
1044 1045

          import paddle.fluid as fluid
1046 1047
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1048

1049
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1050
          with fluid.dygraph.guard():
1051
              x = to_variable(x)
1052
              batch_norm = fluid.BatchNorm(10)
1053
              hidden1 = batch_norm(x)
1054 1055
    """

M
minqiyang 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1064
                 dtype='float32',
M
minqiyang 已提交
1065 1066 1067 1068
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1069
                 do_model_average_for_mean_and_var=True,
1070 1071
                 use_global_stats=False,
                 trainable_statistics=False):
1072
        super(BatchNorm, self).__init__()
1073
        self._param_attr = param_attr
1074
        self._bias_attr = bias_attr
1075
        self._act = act
M
minqiyang 已提交
1076 1077 1078

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1079 1080
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1081 1082 1083 1084 1085 1086
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1087
        self.weight = self.create_parameter(
1088
            attr=self._param_attr,
M
minqiyang 已提交
1089 1090 1091
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1092
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1093

1094
        self.bias = self.create_parameter(
1095
            attr=self._bias_attr,
M
minqiyang 已提交
1096 1097 1098
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1099
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1100

1101
        self._mean = self.create_parameter(
M
minqiyang 已提交
1102 1103 1104 1105 1106 1107 1108
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1109
        self._mean.stop_gradient = True
M
minqiyang 已提交
1110

1111
        self._variance = self.create_parameter(
M
minqiyang 已提交
1112 1113 1114 1115 1116 1117 1118
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1119
        self._variance.stop_gradient = True
M
minqiyang 已提交
1120 1121

        self._in_place = in_place
1122
        self._data_layout = data_layout
M
minqiyang 已提交
1123 1124 1125
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1126
        self._fuse_with_relu = False
M
minqiyang 已提交
1127
        self._use_global_stats = use_global_stats
1128
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1129 1130 1131 1132 1133 1134 1135

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

        if in_dygraph_mode():
            _is_test = (not _dygraph_tracer()._train_mode) and (
                not self._trainable_statistics)
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", _is_test, "data_layout", self._data_layout,
                     "use_mkldnn", False, "fuse_with_relu",
                     self._fuse_with_relu, "use_global_stats",
                     self._use_global_stats)
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1151 1152 1153
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics
        }
M
minqiyang 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1173 1174 1175 1176 1177 1178
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1179 1180 1181 1182 1183 1184 1185 1186 1187

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1188
        self._helper.append_op(
1189
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1190

L
lujun 已提交
1191
        # Currently, we don't support inplace in dygraph mode
1192
        return self._helper.append_activation(batch_norm_out, self._act)
1193 1194


1195 1196 1197 1198
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1199 1200 1201 1202 1203 1204
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1205 1206
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1207

1208
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1209 1210 1211 1212 1213 1214 1215
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1216 1217
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1231

1232
    Parameters:
L
lujun 已提交
1233 1234
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1253
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1254 1255 1256
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1257

Z
zhongpu 已提交
1258 1259
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1260

1261
    Returns:
Z
zhongpu 已提交
1262
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1263 1264

    Examples:
1265

1266 1267
        .. code-block:: python

L
lujun 已提交
1268 1269 1270 1271
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1272
          # example 1
1273 1274
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1275 1276
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1277
              emb = fluid.dygraph.Embedding(
1278 1279 1280
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1281
              static_rlt3 = emb(base.to_variable(inp_word))
1282
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1297 1298
    """

1299 1300 1301 1302 1303 1304 1305
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1306
        super(Embedding, self).__init__()
1307 1308 1309 1310
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1311
            size[0] + padding_idx)
1312 1313 1314

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1315
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1316 1317 1318
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1319
        self.weight = self.create_parameter(
1320 1321 1322 1323 1324 1325
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1326 1327 1328 1329 1330 1331
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1332 1333 1334 1335 1336 1337
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1338

1339 1340
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1341
            type='lookup_table_v2',
1342
            inputs={'Ids': input,
1343
                    'W': self.weight},
1344
            outputs={'Out': out},
1345
            attrs=attrs)
1346 1347

        return out
M
minqiyang 已提交
1348 1349


1350
class LayerNorm(layers.Layer):
1351
    """
1352 1353 1354
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1355
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1356

1357
    The formula is as follows:
1358

1359
    ..  math::
1360

1361
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1362

1363
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1364

1365
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1366

1367 1368 1369 1370 1371
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1372

1373
    Parameters:
1374 1375 1376 1377
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1378
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1379
            normalization. Default: True.
1380
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1381
            normalization. Default: True.
1382
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1383
            division by zero. Default: 1e-05.
1384
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1385 1386 1387
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1388
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1389
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1390 1391 1392
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1393
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1394
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1395
                  Default: None.
1396 1397
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1398
    Returns:
1399
        None
1400

1401
    Examples:
1402

1403 1404 1405
        .. code-block:: python

          import paddle.fluid as fluid
1406
          from paddle.fluid.dygraph.base import to_variable
1407 1408
          import numpy

1409
          x = numpy.random.random((3, 32, 32)).astype('float32')
1410
          with fluid.dygraph.guard():
1411
              x = to_variable(x)
1412
              layerNorm = fluid.LayerNorm([32, 32])
1413
              ret = layerNorm(x)
1414

1415
    """
1416

1417
    def __init__(self,
1418
                 normalized_shape,
1419 1420 1421 1422 1423
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1424 1425 1426 1427 1428
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1429

1430
        self._normalized_shape = list(normalized_shape)
1431 1432 1433 1434 1435 1436
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1437 1438
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1439
        if self._scale:
1440
            self.weight = self.create_parameter(
1441 1442 1443 1444
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1445 1446
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1447
                logging.warn("param_attr are only available with scale is True")
1448
            self.weight = None
1449

1450 1451
        if self._shift:
            assert self._bias_attr is not False
1452
            self.bias = self.create_parameter(
1453 1454 1455 1456
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1457 1458
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1459
                logging.warn("bias_attr are only available with shift is True")
1460
            self.bias = None
1461 1462

    def forward(self, input):
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1474 1475 1476 1477 1478 1479 1480 1481

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1482
        inputs = dict()
1483
        inputs['X'] = [input]
1484
        if self._scale:
1485
            inputs['Scale'] = [self.weight]
1486
        if self._shift:
1487 1488 1489 1490 1491 1492
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1514
        return self._helper.append_activation(layer_norm_out, act=self._act)
1515 1516


M
minqiyang 已提交
1517 1518 1519
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1520 1521 1522 1523 1524
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1535
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1561
    Parameters:
L
lujun 已提交
1562
        size (int): The input dimension value.
D
DuYao 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1572 1573 1574 1575


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1576 1577 1578 1579
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1580 1581 1582 1583 1584
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1585
            is initialized zero. The default value is None.
L
lujun 已提交
1586
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1587
                             The default value is 'tanh'.
L
lujun 已提交
1588
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1589 1590 1591
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1592

D
DuYao 已提交
1593 1594 1595 1596
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1597

M
minqiyang 已提交
1598
    Returns:
D
DuYao 已提交
1599 1600 1601 1602
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1616
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1617 1618 1619
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1620
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1621 1622 1623
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1634
        super(GRUUnit, self).__init__()
1635
        self._bias_attr = bias_attr
M
minqiyang 已提交
1636 1637 1638 1639 1640
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1641 1642
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1643

M
minqiyang 已提交
1644
        self._dtype = dtype
M
minqiyang 已提交
1645 1646
        size = size // 3
        # create weight
1647
        self.weight = self.create_parameter(
M
minqiyang 已提交
1648
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1649 1650

        # create bias
M
minqiyang 已提交
1651
        bias_size = [1, 3 * size]
1652
        self._bias_size = bias_size
1653
        self.bias = self.create_parameter(
M
minqiyang 已提交
1654
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1655

M
minqiyang 已提交
1656
    def forward(self, input, hidden):
1657 1658 1659 1660 1661 1662
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1663 1664 1665 1666 1667
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1668
        if self.bias is not None:
1669 1670 1671 1672 1673
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }
M
minqiyang 已提交
1674 1675 1676 1677 1678
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1688 1689
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1690 1691 1692
            })

        return updated_hidden, reset_hidden_pre, gate
1693 1694 1695 1696


class NCE(layers.Layer):
    """
1697 1698 1699 1700 1701
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1702
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1703

1704
    Parameters:
1705 1706
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1707
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1708 1709 1710
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1711
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1712 1713 1714 1715
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1716
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1717
        sampler (str, optional): The sampler used to sample class from negative classes.
1718 1719
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1720
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1721
                       It is used when sampler is set to 'custom_dist'.
1722
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1723
                       Default: None.
1724 1725
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1726
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1727

1728 1729
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1730

1731 1732
        **bias** (Parameter or None): the learnable bias of this layer.
    
1733
    Returns:
1734
        None
1735 1736 1737 1738

    Examples:
        .. code-block:: python

1739 1740 1741
            import numpy as np
            import paddle.fluid as fluid

1742
            window_size = 5
1743 1744
            dict_size = 20
            label_word = int(window_size // 2) + 1
1745
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1767
                nce = fluid.NCE(
1768
                             num_total_classes=dict_size,
1769
                             dim=embs3.shape[1],
1770 1771 1772 1773 1774 1775 1776
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1777 1778
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1779 1780 1781 1782 1783

    """

    def __init__(self,
                 num_total_classes,
1784
                 dim,
1785
                 sample_weight=None,
1786 1787 1788 1789 1790 1791
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1792 1793 1794
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1795 1796 1797
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1798
        self._dtype = dtype
1799
        self._inputs = dict()
1800
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1888
        self.weight = self.create_parameter(
1889 1890 1891
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1892
            dtype=self._dtype)
1893
        if self._bias_attr:
1894
            self.bias = self.create_parameter(
1895 1896 1897
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1898
                dtype=self._dtype)
1899 1900
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
1931 1932 1933 1934
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1935 1936 1937 1938 1939
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1940
    Parameters:
L
lujun 已提交
1941
        mode (str): The mode for weight sharing. It supports all, channel
1942 1943 1944
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1945 1946 1947
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1948
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1949 1950
          This argument is required when mode is "element".
          Default: None.
1951 1952
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1953
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1954

1955 1956 1957
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
1958
    Returns:
1959
        None
1960 1961 1962 1963 1964

    Examples:

        .. code-block:: python

L
lujun 已提交
1965
          import paddle.fluid as fluid
1966
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1967 1968 1969 1970
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1971
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1983
                 input_shape=inp_np.shape,
L
lujun 已提交
1984
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1985
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1986

1987 1988
    """

S
songyouwei 已提交
1989 1990 1991 1992 1993
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
1994
                 dtype='float32'):
1995 1996
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
1997 1998
        self._mode = mode
        self._param_attr = param_attr
1999
        self._dtype = dtype
S
songyouwei 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2014
        self.weight = self.create_parameter(
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2026
                    'Alpha': self.weight},
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2047
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2048

2049
    Parameters:
2050 2051 2052 2053 2054
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2055 2056 2057 2058
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2059
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2060
           If it is set to None, the bias is initialized zero. The default value is None.
2061
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2062

D
DuYao 已提交
2063 2064 2065 2066
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2067

2068 2069 2070 2071 2072 2073
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2074 2075 2076 2077 2078 2079 2080
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2081
                    input1_dim=5, input2_dim=4, output_dim=1000)
2082 2083
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2084 2085 2086
    """

    def __init__(self,
2087 2088 2089
                 input1_dim,
                 input2_dim,
                 output_dim,
2090 2091 2092
                 name=None,
                 act=None,
                 param_attr=None,
2093 2094 2095
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2096 2097 2098 2099
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2100 2101 2102
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2103
        self._inputs = dict()
2104
        self._dtype = dtype
2105

2106
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2107
        self.weight = self.create_parameter(
2108 2109 2110 2111
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2112
        bias_size = [1, self._output_dim]
2113
        self.bias = self.create_parameter(
2114 2115 2116 2117
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2118 2119

    def forward(self, x, y):
2120
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2121
        if self.bias is not None:
2122
            self._inputs["Bias"] = self.bias
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2137
        return self._helper.append_activation(out, act=self._act)
2138 2139 2140 2141


class Conv2DTranspose(layers.Layer):
    """
2142 2143
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2144
    The convolution2D transpose layer calculates the output based on the input,
2145 2146 2147
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2148 2149
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2150 2151
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2152 2153 2154
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2155 2156
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2157 2158 2159 2160 2161 2162 2163 2164 2165

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2166 2167
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2168
    * :math:`\\ast`: Convolution operation.
2169
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2194
    Parameters:
2195
        num_channels(int): The number of channels in the input image.
2196
        num_filters(int): The number of the filter. It is as same as the output
2197
            feature map.
2198 2199 2200
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2201
        output_size(int or tuple, optional): The output image size. If output size is a
2202 2203 2204
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2205
            should follow the formula above. Default: None.
2206
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2207
            contain two integers, (padding_H, padding_W). Otherwise, the
2208 2209
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2210
            contain two integers, (stride_H, stride_W). Otherwise, the
2211 2212
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2213
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2214 2215
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2216 2217 2218 2219
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2220 2221
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2222 2223 2224
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2225
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2226 2227 2228 2229
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2230
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2231
            library is installed. Default: True.
2232
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2233
            Default: None.
2234
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2235

2236 2237
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2238

2239
        **bias** (Parameter or None): the learnable bias of this layer.
2240

2241 2242
    Returns:
        None
2243 2244 2245 2246

    Examples:
       .. code-block:: python

2247
          import paddle.fluid as fluid
2248
          import numpy as np
2249 2250

          with fluid.dygraph.guard():
2251
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2252
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2253
                    num_channels=32, num_filters=2, filter_size=3)
2254 2255
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2256 2257 2258
    """

    def __init__(self,
2259
                 num_channels,
2260
                 num_filters,
2261
                 filter_size,
2262 2263 2264 2265 2266 2267 2268 2269
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2270 2271 2272
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2273 2274 2275
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2276
        self._act = act
2277
        self._groups = groups
2278
        self._num_channels = num_channels
2279 2280 2281 2282 2283 2284 2285
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2286
        self._dtype = dtype
2287

2288 2289 2290
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2291
            self._op_type = 'depthwise_conv2d_transpose'
2292 2293
        else:
            self._op_type = 'conv2d_transpose'
2294 2295 2296 2297 2298

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2299 2300
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2312
        filter_shape = [self._num_channels, self._num_filters // self._groups
2313 2314
                        ] + self._filter_size

2315
        self.weight = self.create_parameter(
2316
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2317

2318
        self.bias = self.create_parameter(
2319 2320 2321 2322 2323
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2324
    def forward(self, input):
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2347 2348 2349 2350
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2351
            inputs=inputs,
2352
            outputs={'Output': pre_bias},
2353
            attrs=attrs)
2354

2355
        if self.bias is not None:
2356 2357 2358 2359 2360
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2361
                        'Y': [self.bias]},
2362 2363 2364 2365 2366 2367
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2368 2369 2370 2371 2372 2373 2374 2375 2376
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2377
    Parameters:
L
lujun 已提交
2378
        name_scope(str): The name of this class.
2379
        num_filters (int): number of filters.
L
lujun 已提交
2380 2381 2382
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2395 2396 2397 2398
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2412
        assert not in_dygraph_mode(
2413
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2414 2415 2416 2417 2418 2419 2420
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2421
        self._act = act
2422

2423
    def _build_once(self, input):
2424 2425
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2426
        self.weight = self.create_parameter(
2427
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2428

2429
        self.bias = self.create_parameter(
2430 2431 2432 2433 2434
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2435 2436 2437 2438 2439 2440
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2441
                'Filter': [self.weight],
2442 2443 2444 2445 2446 2447 2448
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2449

2450
        if self.bias is not None:
2451 2452 2453 2454 2455
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2456
                        'Y': [self.bias]},
2457 2458 2459 2460 2461 2462
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2463 2464 2465


class RowConv(layers.Layer):
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2484
    Parameters:
L
lujun 已提交
2485
        name_scope(str): The name of this class.
2486 2487 2488
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2489 2490
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2491

2492 2493 2494
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2495
    Returns:
L
lujun 已提交
2496 2497
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2513 2514 2515 2516 2517
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2518
        assert not in_dygraph_mode(
2519
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2520 2521 2522 2523 2524
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2525
    def _build_once(self, input):
L
lujun 已提交
2526 2527
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2528
        self.weight = self.create_parameter(
2529 2530 2531 2532
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2533 2534 2535 2536 2537 2538

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2539
                    'Filter': [self.weight]},
L
lujun 已提交
2540 2541 2542 2543 2544 2545
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2546 2547 2548 2549 2550 2551
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2552
        channels(int): The number of channels of input.
2553 2554 2555 2556 2557 2558 2559 2560 2561
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2562
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2576
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2577
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2578 2579 2580 2581

    """

    def __init__(self,
2582
                 channels,
L
lujun 已提交
2583 2584 2585 2586 2587
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2588 2589 2590
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2591 2592 2593
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2594
        self._channels = channels
L
lujun 已提交
2595 2596
        self._groups = groups
        self._act = act
2597
        self._dtype = dtype
L
lujun 已提交
2598 2599 2600
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2601
        param_shape = [self._channels]
L
lujun 已提交
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2614 2615 2616

    def forward(self, input):
        inputs = {'X': input}
2617
        if self.bias is not None:
2618
            inputs['Bias'] = self.bias
2619
        if self.weight is not None:
2620
            inputs['Scale'] = self.weight
L
lujun 已提交
2621 2622

        # create output
2623
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2645
    """
2646 2647
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2658
    :attr:`power_iters` should be a positive integer, do following
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2679
    Parameters:
2680
        weight_shape(list or tuple): The shape of weight parameter.
2681 2682 2683 2684
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2685
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2686 2687

    Returns:
2688
        None
2689 2690 2691 2692 2693

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2694
            import numpy as np
2695 2696

            with fluid.dygraph.guard():
2697 2698 2699
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2700 2701 2702

    """

2703 2704 2705 2706 2707 2708 2709
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2710 2711 2712
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2713
        self._dtype = dtype
L
lujun 已提交
2714

2715 2716 2717
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2718

2719
        self.weight_u = self.create_parameter(
L
lujun 已提交
2720 2721 2722 2723
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2724
        self.weight_u.stop_gradient = True
L
lujun 已提交
2725

2726
        self.weight_v = self.create_parameter(
L
lujun 已提交
2727 2728 2729 2730
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2731
        self.weight_v.stop_gradient = True
L
lujun 已提交
2732 2733

    def forward(self, weight):
2734
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2750
    """
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2761
        feature_size(int): last dimension of nodes_vector.
2762 2763 2764 2765 2766 2767 2768
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2769
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2770

2771 2772
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2773

2774
        **bias** (Parameter or None): the learnable bias of this layer.
2775

2776 2777
    Returns:
        None
L
lujun 已提交
2778

2779
    Examples:
L
lujun 已提交
2780

2781
        .. code-block:: python
2782

2783 2784
          import paddle.fluid as fluid
          import numpy
2785

2786 2787 2788 2789
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2790
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2791
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2792 2793
    """

L
lujun 已提交
2794
    def __init__(self,
2795
                 feature_size,
L
lujun 已提交
2796 2797 2798 2799 2800 2801
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2802 2803 2804
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2805
        self._name = name
2806
        self._feature_size = feature_size
L
lujun 已提交
2807 2808 2809 2810 2811 2812
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2813 2814
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2815
        if self._bias_attr:
2816
            self.bias = self.create_parameter(
L
lujun 已提交
2817 2818 2819 2820
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2821
        self.weight = self.create_parameter(
L
lujun 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2839
                'Filter': self.weight
L
lujun 已提交
2840 2841 2842 2843 2844 2845 2846 2847 2848
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2849
                        'Y': [self.bias]},
L
lujun 已提交
2850 2851 2852 2853 2854
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)