analyzer_lac_tester.cc 9.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

T
tensor-tang 已提交
15 16
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/inference/api/analysis_predictor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/inference/api/helper.h"
20
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
22

T
tensor-tang 已提交
23 24 25 26 27 28
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
29

T
tensor-tang 已提交
30 31 32
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108 109 110 111 112 113 114 115 116 117
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
118

T
tensor-tang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
L
luotao1 已提交
144
  PrintTime(batch_size, repeat, 1, 0, sum / repeat);
T
tensor-tang 已提交
145
}
T
tensor-tang 已提交
146

T
tensor-tang 已提交
147 148 149 150
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
151

T
tensor-tang 已提交
152 153
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
154 155
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
T
tensor-tang 已提交
156 157 158 159 160
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
161
  std::vector<PaddleTensor> input_slots, outputs_slots;
T
tensor-tang 已提交
162 163
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
164 165
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
T
tensor-tang 已提交
166 167 168 169 170 171
    AnalysisConfig cfg;
    cfg.model_dir = model_path;
    cfg.use_gpu = false;
    cfg.device = 0;
    cfg.specify_input_name = true;
    cfg.enable_ir_optim = true;
T
tensor-tang 已提交
172
    predictor =
T
tensor-tang 已提交
173
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
174 175 176 177
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
T
tensor-tang 已提交
178 179 180 181
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
T
tensor-tang 已提交
182 183 184 185 186 187 188 189 190 191
  if (test_all_data) {
    double sum = 0;
    for (int i = 0; i < repeat; i++) {
      for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
        GetOneBatch(&input_slots, &data, batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs_slots);
        sum += timer.toc();
      }
    }
T
tensor-tang 已提交
192
    PrintTime(batch_size, repeat, 1, 0, sum / batch_size);
T
tensor-tang 已提交
193 194
    return;
  }
T
tensor-tang 已提交
195 196 197 198
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
L
luotao1 已提交
199
  PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
T
tensor-tang 已提交
200 201

  // check result
T
tensor-tang 已提交
202 203 204 205 206 207 208 209 210 211 212
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
213 214

  if (use_analysis) {
T
tensor-tang 已提交
215 216 217
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
218
    std::vector<PaddleTensor> ref_outputs_slots;
T
tensor-tang 已提交
219
    ref_predictor->Run(input_slots, &ref_outputs_slots);
T
tensor-tang 已提交
220 221 222 223 224 225 226 227 228 229
    EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], pdata[i]);
    }
T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
248 249 250 251
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
    EXPECT_EQ(num_ops, 11);
T
tensor-tang 已提交
252
  }
T
tensor-tang 已提交
253
}
T
tensor-tang 已提交
254

T
tensor-tang 已提交
255 256 257 258 259
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
260 261 262 263 264 265 266

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
267 268 269
}  // namespace analysis
}  // namespace inference
}  // namespace paddle