// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/analyzer.h" #include #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/inference/api/analysis_predictor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/platform/profiler.h" DEFINE_string(infer_model, "", "model path for LAC"); DEFINE_string(infer_data, "", "data file for LAC"); DEFINE_int32(batch_size, 1, "batch size."); DEFINE_int32(burning, 0, "Burning before repeat."); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); namespace paddle { namespace inference { namespace analysis { struct DataRecord { std::vector data; std::vector lod; // for dataset and nextbatch size_t batch_iter{0}; std::vector> batched_lods; std::vector> batched_datas; std::vector> datasets; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) { Load(path); Prepare(batch_size); batch_iter = 0; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; datasets.resize(0); while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ';', &data); std::vector words_ids; split_to_int64(data[1], ' ', &words_ids); datasets.emplace_back(words_ids); } } void Prepare(int bs) { if (bs == 1) { batched_datas = datasets; for (auto one_sentence : datasets) { batched_lods.push_back({0, one_sentence.size()}); } } else { std::vector one_batch; std::vector lod{0}; int bs_id = 0; for (auto one_sentence : datasets) { bs_id++; one_batch.insert(one_batch.end(), one_sentence.begin(), one_sentence.end()); lod.push_back(lod.back() + one_sentence.size()); if (bs_id == bs) { bs_id = 0; batched_datas.push_back(one_batch); batched_lods.push_back(lod); one_batch.clear(); one_batch.resize(0); lod.clear(); lod.resize(0); lod.push_back(0); } } if (one_batch.size() != 0) { batched_datas.push_back(one_batch); batched_lods.push_back(lod); } } } DataRecord NextBatch() { DataRecord data; data.data = batched_datas[batch_iter]; data.lod = batched_lods[batch_iter]; batch_iter++; if (batch_iter >= batched_datas.size()) { batch_iter = 0; } return data; } }; void GetOneBatch(std::vector *input_slots, DataRecord *data, int batch_size) { auto one_batch = data->NextBatch(); PaddleTensor input_tensor; input_tensor.name = "word"; input_tensor.shape.assign({static_cast(one_batch.data.size()), 1}); input_tensor.lod.assign({one_batch.lod}); input_tensor.dtype = PaddleDType::INT64; TensorAssignData(&input_tensor, {one_batch.data}); PADDLE_ENFORCE_EQ(batch_size, static_cast(one_batch.lod.size() - 1)); input_slots->assign({input_tensor}); } void BenchAllData(const std::string &model_path, const std::string &data_file, const int batch_size, const int repeat) { NativeConfig config; config.model_dir = model_path; config.use_gpu = false; config.device = 0; config.specify_input_name = true; std::vector input_slots, outputs_slots; DataRecord data(data_file, batch_size); auto predictor = CreatePaddlePredictor(config); GetOneBatch(&input_slots, &data, batch_size); for (int i = 0; i < FLAGS_burning; i++) { predictor->Run(input_slots, &outputs_slots); } Timer timer; double sum = 0; for (int i = 0; i < repeat; i++) { for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) { GetOneBatch(&input_slots, &data, batch_size); timer.tic(); predictor->Run(input_slots, &outputs_slots); sum += timer.toc(); } } PrintTime(batch_size, repeat, 1, 0, sum / repeat); } const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23}; void TestLACPrediction(const std::string &model_path, const std::string &data_file, const int batch_size, const int repeat, bool test_all_data, bool use_analysis = false) { NativeConfig config; config.model_dir = model_path; config.use_gpu = false; config.device = 0; config.specify_input_name = true; std::vector input_slots, outputs_slots; DataRecord data(data_file, batch_size); GetOneBatch(&input_slots, &data, batch_size); std::unique_ptr predictor; if (use_analysis) { AnalysisConfig cfg; cfg.model_dir = model_path; cfg.use_gpu = false; cfg.device = 0; cfg.specify_input_name = true; cfg.enable_ir_optim = true; predictor = CreatePaddlePredictor(cfg); } else { predictor = CreatePaddlePredictor(config); } for (int i = 0; i < FLAGS_burning; i++) { predictor->Run(input_slots, &outputs_slots); } Timer timer; if (test_all_data) { double sum = 0; for (int i = 0; i < repeat; i++) { for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) { GetOneBatch(&input_slots, &data, batch_size); timer.tic(); predictor->Run(input_slots, &outputs_slots); sum += timer.toc(); } } PrintTime(batch_size, repeat, 1, 0, sum / batch_size); return; } timer.tic(); for (int i = 0; i < repeat; i++) { predictor->Run(input_slots, &outputs_slots); } PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat); // check result EXPECT_EQ(outputs_slots.size(), 1UL); auto &out = outputs_slots[0]; size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, [](int a, int b) { return a * b; }); size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t); PADDLE_ENFORCE_GT(size, 0); EXPECT_GE(size, batch1_size); int64_t *pdata = static_cast(out.data.data()); for (size_t i = 0; i < batch1_size; ++i) { EXPECT_EQ(pdata[i], lac_ref_data[i]); } if (use_analysis) { // run once for comparion as reference auto ref_predictor = CreatePaddlePredictor(config); std::vector ref_outputs_slots; ref_predictor->Run(input_slots, &ref_outputs_slots); EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size()); auto &ref_out = ref_outputs_slots[0]; size_t ref_size = std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1, [](int a, int b) { return a * b; }); EXPECT_EQ(size, ref_size); int64_t *pdata_ref = static_cast(ref_out.data.data()); for (size_t i = 0; i < size; ++i) { EXPECT_EQ(pdata_ref[i], pdata[i]); } AnalysisPredictor *analysis_predictor = dynamic_cast(predictor.get()); auto &fuse_statis = analysis_predictor->analysis_argument() .Get>( framework::ir::kFuseStatisAttr); for (auto &item : fuse_statis) { LOG(INFO) << "fused " << item.first << " " << item.second; } int num_ops = 0; for (auto &node : analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) { if (node->IsFunction()) { ++num_ops; } } LOG(INFO) << "has num ops: " << num_ops; ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_TRUE(fuse_statis.count("fc_gru_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4); EXPECT_EQ(num_ops, 11); } } TEST(Analyzer_LAC, native) { LOG(INFO) << "LAC with native"; TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size, FLAGS_repeat, FLAGS_test_all_data); } TEST(Analyzer_LAC, analysis) { LOG(INFO) << "LAC with analysis"; TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size, FLAGS_repeat, FLAGS_test_all_data, true); } } // namespace analysis } // namespace inference } // namespace paddle