analyzer_lac_tester.cc 7.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
22

T
tensor-tang 已提交
23 24 25 26 27 28
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
29

T
tensor-tang 已提交
30 31 32
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
static void PrintTime(const double latency, const int bs, const int repeat) {
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
            << ", avg latency: " << latency / repeat << "ms";
  LOG(INFO) << "=====================================";
}
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
  PrintTime(sum, batch_size, repeat);
}
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
                       const int repeat, bool test_all_data) {
  if (test_all_data) {
    BenchAllData(model_path, data_file, batch_size, repeat);
    return;
  }
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  PrintTime(timer.toc(), batch_size, repeat);
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
}
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
}  // namespace analysis
}  // namespace inference
}  // namespace paddle