analyzer_lac_tester.cc 9.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

T
tensor-tang 已提交
15 16
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/inference/api/analysis_predictor.h"
T
tensor-tang 已提交
21 22 23
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28 29 30
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
31

T
tensor-tang 已提交
32 33 34
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
35

T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
107

T
tensor-tang 已提交
108 109 110 111 112 113 114 115 116 117 118 119
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
120

T
tensor-tang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
L
luotao1 已提交
146
  PrintTime(batch_size, repeat, 1, 0, sum / repeat);
T
tensor-tang 已提交
147
}
T
tensor-tang 已提交
148

T
tensor-tang 已提交
149 150 151 152
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
153

T
tensor-tang 已提交
154 155
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
156 157
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
T
tensor-tang 已提交
158 159 160 161 162
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
T
tensor-tang 已提交
163
  std::vector<PaddleTensor> input_slots, outputs_slots, ref_outputs_slots;
T
tensor-tang 已提交
164 165
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
166 167
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
T
tensor-tang 已提交
168 169 170 171 172 173
    AnalysisConfig cfg;
    cfg.model_dir = model_path;
    cfg.use_gpu = false;
    cfg.device = 0;
    cfg.specify_input_name = true;
    cfg.enable_ir_optim = true;
T
tensor-tang 已提交
174
    cfg.ir_passes.push_back("fc_gru_fuse_pass");
T
tensor-tang 已提交
175
    predictor =
T
tensor-tang 已提交
176
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
177 178 179 180
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
T
tensor-tang 已提交
181 182 183 184
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
T
tensor-tang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
  if (test_all_data) {
    double sum = 0;
    for (int i = 0; i < repeat; i++) {
      for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
        GetOneBatch(&input_slots, &data, batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs_slots);
        sum += timer.toc();
      }
    }
    PrintTime(sum, batch_size, repeat);
    return;
  }
T
tensor-tang 已提交
198 199 200 201
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
L
luotao1 已提交
202
  PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
T
tensor-tang 已提交
203 204

  // check result
T
tensor-tang 已提交
205 206 207 208 209 210 211 212 213 214 215
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
216 217

  if (use_analysis) {
T
tensor-tang 已提交
218 219 220 221
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
    ref_predictor->Run(input_slots, &ref_outputs_slots);
T
tensor-tang 已提交
222 223 224 225 226 227 228 229 230 231
    EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], pdata[i]);
    }
T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
    // ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
T
tensor-tang 已提交
251 252
    LOG(INFO) << "fc fuse num:" << fuse_statis.at("fc_fuse");
    // LOG(INFO) << "fc gru fuse num:" << fuse_statis.at("fc_gru_fuse");
T
tensor-tang 已提交
253
  }
T
tensor-tang 已提交
254
}
T
tensor-tang 已提交
255

T
tensor-tang 已提交
256 257 258 259 260
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
261 262 263 264 265 266 267

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
268 269 270
}  // namespace analysis
}  // namespace inference
}  // namespace paddle