math.py 76.0 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
L
Li Fuchen 已提交
24 25 26
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
from ..fluid.layers import reduce_max    #DEFINE_ALIAS
from ..fluid.layers import reduce_min    #DEFINE_ALIAS
from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
60 61
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
62

63 64 65
from ..fluid.layers import increment    #DEFINE_ALIAS
from ..fluid.layers import multiplex    #DEFINE_ALIAS
from ..fluid.layers import sums    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67
import paddle
68

69

70
__all__ = [
71 72 73 74 75 76
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
77
        'cosh',
78 79 80 81 82 83 84 85 86
        'cumsum',
        'elementwise_add',
        'elementwise_div',
        'elementwise_floordiv',
        'elementwise_mod',
        'elementwise_pow',
        'elementwise_sub',
        'exp',
        'floor',
87
        'increment',
88 89
        'log',
        'mul',
90
        'multiplex',
91
        'pow',
92
        'prod',
93 94 95 96 97 98 99 100 101 102
        'reciprocal',
        'reduce_max',
        'reduce_min',
        'reduce_prod',
        'reduce_sum',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
103
        'sinh',
104 105 106 107
        'sqrt',
        'square',
        'stanh',
        'sum',
108
        'sums',
109 110 111
        'tanh',
        'elementwise_sum',
        'max',
112
        'maximum',
113
        'min',
114
        'minimum',
115
        'mm',
116 117 118 119 120
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
121
        'multiply',
122 123 124
        'add',
        'atan',
        'logsumexp',
125
        'inverse',
126 127 128 129
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
130
        'clip',
L
Li Fuchen 已提交
131
        'trace',
J
Jack Zhou 已提交
132 133 134 135
        'kron',
        'isfinite',
        'isinf',
        'isnan'
136 137 138
]
# yapf: enable.

139 140 141 142 143 144 145 146 147 148 149 150 151
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

152
def pow(x, y, name=None):
153
    """
154
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
155

156 157
    .. math::
        out = x^{y} 
158

159 160
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
161 162


163 164 165 166 167
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
168
    Returns:
169
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
170 171 172

    Examples:

173
        ..  code-block:: python
174 175 176

            import paddle

177 178 179
            paddle.disable_static()
            
            # example 1: y is a float
180
            x = paddle.to_tensor([1, 2, 3])
181 182 183 184 185 186 187 188
            y = 2
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
            
            # example 2: y is a Tensor
            y = paddle.fill_constant(shape=[1], value=2, dtype='float32')
            res = paddle.pow(x, y)
            print(res.numpy()) # [1 4 9]
189 190

    """
191
    # in dynamic graph mode
W
WuHaobo 已提交
192
    if in_dygraph_mode():
193 194 195
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out_dygraph = _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
                return out_dygraph

            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            if x.dtype != y.dtype:
                y = cast(y, dtype='float64')
                x = cast(x, dtype='float64')
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            else:
                out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
230 231 232



233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

253 254
    out = helper.kwargs.get('out', None)

255 256 257 258 259 260 261 262 263 264 265 266
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
267 268 269 270 271 272

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
273 274 275 276 277 278 279 280 281 282 283

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
284
def add(x, y, name=None):
285 286 287 288 289 290 291
    """
Examples:

    ..  code-block:: python

        import paddle

Y
Yang Zhang 已提交
292
        paddle.disable_static()
293 294
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
295
        z = paddle.add(x, y)
Y
Yang Zhang 已提交
296 297
        np_z = z.numpy()
        print(np_z)  # [3., 8., 6. ]
298 299 300 301 302 303

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
304
            x, y, axis=axis, op_name=op_type)
305 306 307 308

    return _elementwise_op(LayerHelper(op_type, **locals()))


309
def divide(x, y, name=None):
310
    """
311
    Divide two tensors element-wise. The equation is:
312

313 314
    .. math::
        out = x / y
315

316 317
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
318

319 320 321 322
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
323

324 325
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
326

327
    Examples:
328

329
        ..  code-block:: python
330

331
            import paddle
332

333
            paddle.disable_static()
334

335 336
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
337 338
            z = paddle.divide(x, y)
            print(z.numpy())  # [2., 0.6, 2.]
339

340 341 342 343 344
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

        # rule 2: both the inputs are not Tensor
        elif not isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=x)
            y = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=y)

        # rule 3: both the inputs are Tensor
        elif isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))
            elif x.dtype in _supported_int_dtype_:
                x = x.astype(paddle.get_default_dtype())
                y = y.astype(paddle.get_default_dtype())

        # rule 4: x is Tensor, y is scalar
        elif isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            if x.dtype in _supported_int_dtype_:
                x = x.astype(paddle.get_default_dtype())
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

        # rule 5: x is scalar, y is Tensor
        elif not isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype in _supported_int_dtype_:
                y = y.astype(paddle.get_default_dtype())
            x = paddle.full(shape=[1], dtype=y.dtype, fill_value=x)

375 376
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

    # rule 2: both the inputs are not Tensor
    elif not isinstance(x, Variable) and not isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=x)
        y = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=y)

    # rule 3: both the inputs are Tensor
    elif isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))
        elif x.dtype in _supported_int_dtype_:
            x = paddle.cast(x, paddle.get_default_dtype())
            y = paddle.cast(y, paddle.get_default_dtype())

    # rule 4: x is Tensor, y is scalar
    elif isinstance(x, Variable) and not isinstance(y, Variable):
        if x.dtype in _supported_int_dtype_:
            x = paddle.cast(x, paddle.get_default_dtype())
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

    # rule 5: x is scalar, y is Tensor
    elif not isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype in _supported_int_dtype_:
            y = paddle.cast(y, paddle.get_default_dtype())
        x = paddle.fill_constant(shape=[1], dtype=y.dtype, value=x)

408
    return _elementwise_op(LayerHelper(op_type, **locals()))
409 410


411 412 413
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
414

415 416
    .. math::
        out = x // y
417

418 419
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
420

421 422 423 424
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
425

426 427
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
428

429
    Examples:
430

431
        ..  code-block:: python
432

433
            import paddle
434

435
            paddle.disable_static()
436

437 438
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
439 440
            z = paddle.floor_divide(x, y)
            print(z.numpy())  # [2, 0, 2, 2]
441

442 443 444 445
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("floor_divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

        # rule 2: both the inputs are not Tensor
        elif not isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=x)
            y = paddle.full(shape=[1], dtype=paddle.get_default_dtype(), fill_value=y)

        # rule 3: both the inputs are Tensor
        elif isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("floor_divide(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))

        # rule 4: x is Tensor, y is scalar
        elif isinstance(x, paddle.Tensor) and not isinstance(y, paddle.Tensor):
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

        # rule 5: x is scalar, y is Tensor
        elif not isinstance(x, paddle.Tensor) and isinstance(y, paddle.Tensor):
            x = paddle.full(shape=[1], dtype=y.dtype, fill_value=x)

469 470
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("divide(): arguments must be Tensor or scalar, not numpy.ndarray.")

    # rule 2: both the inputs are not Tensor
    elif not isinstance(x, Variable) and not isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=x)
        y = paddle.fill_constant(shape=[1], dtype=paddle.get_default_dtype(), value=y)

    # rule 3: both the inputs are Tensor
    elif isinstance(x, Variable) and isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("divide(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))

    # rule 4: x is Tensor, y is scalar
    elif isinstance(x, Variable) and not isinstance(y, Variable):
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

    # rule 5: x is scalar, y is Tensor
    elif not isinstance(x, Variable) and isinstance(y, Variable):
        x = paddle.fill_constant(shape=[1], dtype=y.dtype, value=x)

495
    return _elementwise_op(LayerHelper(op_type, **locals()))
496 497


498
def remainder(x, y, name=None):
499
    """
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    Mod two tensors element-wise. The equation is:

    .. math::
        out = x \% y

    **Note**:
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.

    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()

524 525
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
526 527 528 529 530
            z = paddle.remainder(x, y)
            print(z.numpy())  # [0, 3, 2, 1]

    """
    op_type = 'elementwise_mod'
531 532
    axis = -1
    if in_dygraph_mode():
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        # rule 1 : avoid numpy.ndarray
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise TypeError("remainder(): arguments must be Tensor or scalar, not numpy.ndarray.")

        elif not isinstance(x, paddle.Tensor):
            raise TypeError("remainder(): arguments position 1 must be Tensor, not {}".format(type(x)))

        # rule 3: both the inputs are Tensor
        elif isinstance(y, paddle.Tensor):
            if y.dtype != x.dtype:
                raise TypeError("remainder(): argument position 1 and argument position 2 must have the same dtype."
                                "But x is {}, y is {}".format(x.dtype, y.dtype))

        # rule 4: x is Tensor, y is scalar
        elif not isinstance(y, paddle.Tensor):
            y = paddle.full(shape=[1], dtype=x.dtype, fill_value=y)

550
        return _elementwise_op_in_dygraph(
551
            x, y, axis=axis, op_name=op_type)
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    # rule 1 : avoid numpy.ndarray
    if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
        raise TypeError("remainder(): arguments must be Tensor or scalar, not numpy.ndarray.")

    elif not isinstance(x, Variable):
        raise TypeError("remainder(): arguments position 1 must be Tensor, not {}".format(type(x)))

    # rule 3: both the inputs are Tensor
    elif isinstance(y, Variable):
        if y.dtype != x.dtype:
            raise TypeError("remainder(): argument position 1 and argument position 2 must have the same dtype."
                            "But x is {}, y is {}".format(x.dtype, y.dtype))

    # rule 4: x is Tensor, y is scalar
    elif not isinstance(y, paddle.Tensor):
        y = paddle.fill_constant(shape=[1], dtype=x.dtype, value=y)

570 571 572
    return _elementwise_op(LayerHelper(op_type, **locals()))


573 574 575 576
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


577 578
def multiply(x, y, axis=-1, name=None):
    """
579
    multiply two tensors element-wise. The equation is:
580

581 582
    .. math::
        out = x * y
583

584 585
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
586

587 588 589 590
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
591

592 593
    Returns:
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
594

595 596 597 598 599 600 601
    Examples:

        ..  code-block:: python

            import paddle

            paddle.disable_static()
602 603
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
604 605 606
            res = paddle.multiply(x, y)
            print(res.numpy()) # [[5, 12], [21, 32]]

607 608
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 2])
609 610
            res = paddle.multiply(x, y, axis=1)
            print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]
611 612 613 614

    """
    op_type = 'elementwise_mul'
    act = None
615 616 617 618 619
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

620 621 622 623 624 625
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

    return _elementwise_op(LayerHelper(op_type, **locals()))

626 627 628 629 630 631 632 633 634 635 636
def maximum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()
  
637 638
        x = paddle.to_tensor([[1, 2], [3, 4]])
        y = paddle.to_tensor([[5, 6], [7, 8]])
639 640 641 642 643
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[[5. 6.]
        # [7. 8.]]

644 645
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
        y = paddle.to_tensor([1, 2])
646 647 648 649 650
        res = paddle.maximum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 2. 3.]
        #  [2. 2. 3.]]]

651 652
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
653 654 655 656
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 2.  4. nan]

657 658
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        res = paddle.maximum(x, y)
        print(res.numpy())
        #[ 5.  4. inf]
    """
    op_type = 'elementwise_max'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def minimum(x, y, axis=-1, name=None):
    """
Examples:

    .. code-block:: python

        import paddle
        import numpy as np
678

679 680
        paddle.disable_static()
  
681 682
        x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
        y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
683 684 685 686 687
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[[1. 2.]
        # [3. 4.]]

688 689
        x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
        y = paddle.to_tensor([1, 2], dtype='float32')
690 691 692 693 694
        res = paddle.minimum(x, y, axis=1)
        print(res.numpy())
        #[[[1. 1. 1.]
        #  [2. 2. 2.]]]

695 696
        x = paddle.to_tensor([2, 3, 5], dtype='float32')
        y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
697 698 699 700
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[ 1.  3. nan]

701 702
        x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
        y = paddle.to_tensor([1, 4, 5], dtype='float32')
703 704 705 706 707 708 709 710 711 712
        res = paddle.minimum(x, y)
        print(res.numpy())
        #[1. 3. 5.]
    """
    op_type = 'elementwise_min'
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
713

714 715
for func in [
        add,
716 717 718
        maximum,
        minimum,
        multiply
719
]:
720
    proto_dict = {'add': 'elementwise_add', 'div': 'elementwise_div', 'maximum': 'elementwise_max', 'minimum': 'elementwise_min', 'multiply': 'elementwise_mul'}
721 722
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
723 724 725 726 727 728 729
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
730 731
        op_proto,
        additional_args_lines=additional_args_lines,
732
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
733
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
734
        }) + """\n""" + str(func.__doc__)
735

Y
Yang Zhang 已提交
736

737
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
738 739 740 741
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
742 743 744
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
745
            Tensor variable with a single element, otherwise must be in the
746 747 748 749 750 751 752
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
753
            value is False.
754
        name (str, optional): The default value is None. Normally there is no need for
755 756 757
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
758 759
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
760 761

    Raises:
762 763
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
764
        TypeError: The type of :attr:`axis` must be int, list or tuple.
765

766 767 768 769
    Examples:
        .. code-block:: python

            import paddle
770 771
            paddle.disable_static()

772
            # x is a Tensor with following elements:
773 774 775
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
776 777
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
778
            out1 = paddle.sum(x)  # [3.5]
779 780 781
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
782

783
            # y is a Tensor with shape [2, 2, 2] and elements as below:
784 785 786
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
787 788
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
789 790
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
791
    """
792 793 794 795 796 797 798 799 800 801 802
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

803
    attrs = {
804 805 806
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
807 808 809 810
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
811 812
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
813
                attrs.update({
814
                    'in_dtype': x.dtype,
815 816 817 818 819
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
820
        axis = axis if axis != None and axis != [] else [0]
821
        if dtype_flag:
822 823 824
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
825 826
                                       convert_np_dtype_to_dtype_(dtype))
        else:
827 828
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
829
    check_variable_and_dtype(
830
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
831 832 833 834 835 836 837 838 839 840 841

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

842 843
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

844 845 846 847 848
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
849
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
850 851
    helper.append_op(
        type='reduce_sum',
852
        inputs={'X': x},
853 854 855
        outputs={'Out': out},
        attrs=attrs)
    return out
856

857

858 859 860
@templatedoc(op_type="sum")
def elementwise_sum(inputs, name=None):
    """
861 862
	:alias_main: paddle.elementwise_sum
	:alias: paddle.elementwise_sum,paddle.tensor.elementwise_sum,paddle.tensor.math.elementwise_sum
S
swtkiwi 已提交
863

864
    ${comment}
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]

    Args:
897 898
        inputs (Variable|list(Variable)):  A Varaible list. The shape and data type of the list elementsshould be consistent.
            Variable can be multi-dimensional Tensoror LoDTensor, and data types can be: float32, float64, int32, int64.
899 900 901 902
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
903
        Variable: the sum of input :math:`inputs` . its shape and data types are consistent with :math:`inputs` .
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = paddle.elementwise_sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[elementwise_sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
929 930
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
931 932 933 934
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
    """

    helper = LayerHelper('elementwise_sum', **locals())
935 936 937 938 939 940 941 942 943 944 945
    check_type(inputs, 'inputs', (Variable, tuple, list), 'elementwise_sum')
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
                   ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')
    else:
        check_variable_and_dtype(inputs, "inputs", \
                ['float32', 'float64', 'int32', 'int64'], 'elementwise_sum')


946 947 948 949 950 951 952 953 954 955 956
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
957
def mm(input, mat2, name=None):
958
    """
959 960
	:alias_main: paddle.mm
	:alias: paddle.mm,paddle.tensor.mm,paddle.tensor.math.mm
S
swtkiwi 已提交
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        mat2 (Variable): The input variable which is a Tensor or LoDTensor.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], mat2: [B, ..., K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, ..., M, N]

            # x: [B, M, K], mat2: [B, K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [B, M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [B, M, N]

            # x: [M, K], mat2: [K, N]
            # fluid.layers.matmul(x, mat2)  # out: [M, N]

            # x: [B, M, K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [B, M]

            # x: [K], mat2: [K]
            # fluid.layers.matmul(x, mat2)  # out: [1]

            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            mat2 = fluid.data(name='mat2', shape=[3, 2], dtype='float32')
            out = paddle.mm(x, mat2) # out shape is [2, 2]
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
1010
        out = _varbase_creator(dtype=input.dtype)
1011 1012
        core.ops.matmul(input, mat2, out)
        return out
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1050
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1051 1052 1053 1054
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
1055

1056

Y
yaoxuefeng 已提交
1057
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1058
    """
1059 1060
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
        input (Variable): The input Tensor/LoDTensor to be added to the final result.
        x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
        y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1078
        alpha (float): Coefficient of $x*y$.
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of addmm op.

    Examples:
        ..  code-block:: python

            import numpy as np
            import paddle

            data_x = np.ones((2, 2)).astype(np.float32)
            data_y = np.ones((2, 2)).astype(np.float32)
            data_input = np.ones((2, 2)).astype(np.float32)

1094
            paddle.disable_static()
Y
yaoxuefeng 已提交
1095

1096 1097 1098
            x = paddle.to_tensor(data_x)
            y = paddle.to_tensor(data_y)
            input = paddle.to_tensor(data_input)
Y
yaoxuefeng 已提交
1099 1100 1101 1102

            out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )

            print( out.numpy() )
1103 1104 1105
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1126 1127 1128 1129
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1130 1131 1132 1133
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1134
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1135 1136 1137 1138 1139 1140 1141
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1142 1143


1144
def logsumexp(x, axis=None, keepdim=False, name=None):
1145
    """
1146
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1147

1148 1149
    .. math::
       logsumexp(x) = \log\sum exp(x)
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1169

1170
    Returns:
1171 1172
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1173

1174
    Examples:
1175

1176
    .. code-block:: python
1177

1178
        import paddle
Z
zhupengyang 已提交
1179
        import numpy as np
1180

1181
        paddle.disable_static()
Z
zhupengyang 已提交
1182 1183 1184
        
        x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        x = paddle.to_tensor(x)
1185 1186
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1187 1188

    """
Z
zhupengyang 已提交
1189 1190
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x',
1191 1192
                             ['float32', 'float64'],
                             'logsumexp')
1193

Z
zhupengyang 已提交
1194 1195 1196
    out = paddle.exp(x, name)
    out = paddle.sum(out, axis=axis, keepdim=keepdim, name=name)
    out = paddle.log(out, name)
1197
    return out
1198

S
swtkiwi 已提交
1199

1200 1201
def inverse(x, name=None):
    """
1202 1203 1204 1205 1206
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1207
        x (Variable): The input tensor. The last two
1208 1209 1210 1211 1212 1213 1214 1215
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1216 1217
        Variable: A Tensor holds the inverse of x. The shape and data type
                        is the same as x.
1218 1219 1220 1221 1222

    Examples:
        .. code-block:: python

            import paddle
1223
            paddle.disable_static()
1224 1225

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1226 1227
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1228 1229 1230

    """
    if in_dygraph_mode():
1231
        return core.ops.inverse(x)
1232

1233 1234
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1235
                                 ['float32', 'float64'], 'inverse')
1236
        if len(x.shape) < 2:
1237 1238 1239
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1240 1241
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1242
    helper = LayerHelper('inverse', **locals())
1243
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1244
    helper.append_op(
1245
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1246 1247 1248
    return out


1249
def max(x, axis=None, keepdim=False, name=None):
1250
    """
S
swtkiwi 已提交
1251

1252
    Computes the maximum of tensor elements over the given axis.
1253 1254

    Args:
1255
        x(Tensor): A tensor, the data type is float32,
1256
            float64, int32, int64.
1257
        axis(list|int, optional): The axis along which the maximum is computed.
1258
            If :attr:`None`, compute the maximum over all elements of
1259
             `x` and return a Tensor variable with a single element,
1260 1261 1262
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1263
            output Tensor. The result tensor will have one fewer dimension
1264
            than the `x` unless :attr:`keepdim` is true, default
1265
            value is False.
1266
        name(str, optional): The default value is None.  Normally there is no need for
1267 1268 1269
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1270
        Tensor, results of maximum on the specified axis of input tensor,
1271
        it's data type is the same as `x`.
1272 1273 1274

    Examples:
        .. code-block:: python
1275

1276
            import paddle
1277

1278 1279 1280 1281
            paddle.disable_static()

            # data_x is a variable with shape [2, 4]
            # the axis is a int element
1282 1283 1284

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            result1 = paddle.max(x)
            print(result1.numpy())
            #[0.9]
            result2 = paddle.max(x, axis=0)
            print(result2.numpy()) 
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
            print(result3.numpy())
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.9]
            # [0.7]]

            # data_y is a variable with shape [2, 2, 2]
            # the axis is list 
1301 1302 1303

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1304 1305 1306 1307 1308 1309
            result5 = paddle.max(y, axis=[1, 2])
            print(result5.numpy())
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
            print(result6.numpy())
            #[7. 8.]
1310 1311
    """

1312
    if axis is not None and not isinstance(axis, list):
1313 1314 1315 1316 1317 1318 1319 1320
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1321 1322 1323 1324 1325
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1326

1327
    helper = LayerHelper('max', **locals())
1328
    check_variable_and_dtype(
1329
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1330

1331 1332
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1333 1334
    helper.append_op(
        type='reduce_max',
1335
        inputs={'X': x},
1336 1337
        outputs={'Out': out},
        attrs={
1338 1339
            'dim': axis,
            'keep_dim': keepdim,
1340 1341 1342 1343
            'reduce_all': reduce_all
        })
    return out

1344
def min(x, axis=None, keepdim=False, name=None):
1345
    """
S
swtkiwi 已提交
1346

1347
    Computes the minimum of tensor elements over the given axis
1348

1349
    Args:
1350 1351
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1352
            If :attr:`None`, compute the minimum over all elements of
1353
            `x` and return a Tensor variable with a single element,
1354 1355 1356
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1357
            output Tensor. The result tensor will have one fewer dimension
1358
            than the `x` unless :attr:`keepdim` is true, default
1359
            value is False.
W
WuHaobo 已提交
1360
        name(str, optional): The default value is None.  Normally there is no need for 
1361
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1362

1363
    Returns:
1364
        Tensor, results of minimum on the specified axis of input tensor,
1365
        it's data type is the same as input's Tensor.
1366

1367 1368 1369
    Examples:
        .. code-block:: python

1370
            import paddle
1371

1372
            paddle.disable_static()
1373

1374
            # x is a tensor with shape [2, 4]
1375
            # the axis is a int element
1376 1377
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
            result1 = paddle.min(x)
            print(result1.numpy())
            #[0.1]
            result2 = paddle.min(x, axis=0)
            print(result2.numpy())
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
            print(result3.numpy()) 
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
            print(result4.numpy())
            #[[0.2]
            # [0.1]]

1392
            # y is a variable with shape [2, 2, 2]
1393
            # the axis is list 
1394 1395
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1396 1397 1398 1399 1400 1401 1402
            result5 = paddle.min(y, axis=[1, 2])
            print(result5.numpy()) 
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
            print(result6.numpy())
            #[1. 2.]
    """
1403

1404
    if axis is not None and not isinstance(axis, list):
1405 1406 1407 1408 1409 1410 1411
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1412 1413
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1414
    if in_dygraph_mode():
1415
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1416
                                   'reduce_all', reduce_all)
1417 1418 1419 1420 1421 1422 1423

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
1424 1425
    helper.append_op(
        type='reduce_min',
1426
        inputs={'X': x},
1427 1428
        outputs={'Out': out},
        attrs={
1429 1430
            'dim': axis,
            'keep_dim': keepdim,
1431 1432 1433 1434 1435
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1436
def log1p(x, name=None):
1437
    """
1438 1439
	:alias_main: paddle.log1p
	:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
S
swtkiwi 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449
    Calculates the natural log of the given input tensor, element-wise.
    .. math::
        Out = \\ln(x+1)
    Args:
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            # Graph Organizing
            x = fluid.data(name="x", shape=[2,1], dtype="float32")
            res = paddle.log1p(x)
            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())
            # Execute
            x_i = np.array([[0], [1]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1474
    out = helper.create_variable_for_type_inference(dtype)
1475 1476
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1477

W
WuHaobo 已提交
1478

W
WuHaobo 已提交
1479
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1480
    """
1481 1482
	:alias_main: paddle.addcmul
	:alias: paddle.addcmul,paddle.tensor.addcmul,paddle.tensor.math.addcmul
S
swtkiwi 已提交
1483

B
Bai Yifan 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
        out = input + value * tensor1 * tensor2
    Args:
        input(Variable): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Variable): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        out(Variable): The output result. A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
          import paddle
          import paddle.fluid as fluid
          input = fluid.data(name='input', dtype='float32', shape=[3, 4])
          tensor1 = fluid.data(name='tenosr1', dtype='float32', shape=[1, 4])
          tensor2 = fluid.data(name='tensor2', dtype='float32', shape=[3, 4])
          data = paddle.addcmul(input, tensor1, tensor2, value=1.0)
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1517
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1518
    return out
1519 1520


Y
Yang Zhang 已提交
1521
def clip(x, min=None, max=None, name=None):
1522
    """
Y
Yang Zhang 已提交
1523 1524
        :alias_main: paddle.clip
        :alias: paddle.clip,paddle.tensor.clip,paddle.tensor.math.clip
S
swtkiwi 已提交
1525

Y
Yang Zhang 已提交
1526
    **clip layer**
1527

Y
Yang Zhang 已提交
1528
    This operator clip all elements in input into the range [ min, max ] and return
1529 1530 1531 1532
    a resulting tensor as the following equation:

    .. math::

1533
        Out = MIN(MAX(x, min), max)
1534 1535

    Args:
Y
Yang Zhang 已提交
1536 1537
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1538
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1539
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1540 1541 1542 1543 1544 1545
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1546
        Tensor: A Tensor with the same data type and data shape as input.
1547 1548 1549 1550 1551 1552

    Examples:
        .. code-block:: python

            import paddle

Y
Yang Zhang 已提交
1553
            paddle.disable_static()
1554
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1555 1556 1557 1558 1559 1560 1561 1562
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
            print(out1.numpy())
            # [[3.5, 3.5]
            # [4.5, 5.0]]
            print(out2.numpy())
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1563 1564
    """

Y
Yang Zhang 已提交
1565 1566
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1567

W
WuHaobo 已提交
1568
    if in_dygraph_mode():
1569 1570 1571 1572
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1573 1574
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1575
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1576

1577
    if min is not None:
Y
Yang Zhang 已提交
1578
        check_type(min, 'min', (float, int, Variable), 'clip')
1579 1580
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1581
                        'clip', '(When the type of min in clip is Variable.)')
1582
    if max is not None:
Y
Yang Zhang 已提交
1583
        check_type(max, 'max', (float, int, Variable), 'clip')
1584 1585
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1586
                        'clip', '(When the type of max in clip is Variable.)')
1587

Y
Yang Zhang 已提交
1588
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1589 1590

    inputs = {'X': x}
Y
Yang Zhang 已提交
1591
    attrs = {'min': fmin, 'max': fmax}
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1605
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1606
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1607
        dtype=helper.input_dtype('x'))
1608 1609 1610 1611
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1612

W
WuHaobo 已提交
1613

1614
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1615
    """
1616 1617
	:alias_main: paddle.trace
	:alias: paddle.trace,paddle.tensor.trace,paddle.tensor.math.trace
S
swtkiwi 已提交
1618

1619
    This OP computes the sum along diagonals of the input tensor x.
1620 1621

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1622

1623
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1624
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1625
    of the input tensor x.
L
Li Fuchen 已提交
1626

1627
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1628 1629 1630 1631

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1632

L
Li Fuchen 已提交
1633
    Args:
1634 1635 1636 1637
        x(Variable): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Variable: the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1648

L
Li Fuchen 已提交
1649 1650 1651
            case1 = np.random.randn(2, 3).astype('float32')
            case2 = np.random.randn(3, 10, 10).astype('float32')
            case3 = np.random.randn(3, 10, 5, 10).astype('float32')
1652

1653
            paddle.disable_static()
1654

1655 1656 1657
            case1 = paddle.to_tensor(case1)
            case2 = paddle.to_tensor(case2)
            case3 = paddle.to_tensor(case3)
1658 1659 1660
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1661
    """
1662 1663
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1664 1665

    def __check_input(input, offset, dim1, dim2):
1666
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1667 1668 1669
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1670
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1671
        assert len(input_shape) >= 2,                     \
1672 1673
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1674 1675
                len(input_shape)

1676 1677
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1678

1679 1680 1681
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1682

1683 1684 1685
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1686 1687


1688 1689 1690
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1691 1692

    if not in_dygraph_mode():
1693
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1694 1695
    helper = LayerHelper('trace', **locals())

1696
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1697 1698 1699

    helper.append_op(
        type='trace',
1700
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1701
        attrs={'offset': offset,
1702 1703
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1704 1705 1706
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1707
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1708
def kron(x, y, name=None):
S
swtkiwi 已提交
1709
    """
1710 1711
	:alias_main: paddle.kron
	:alias: paddle.kron,paddle.tensor.kron,paddle.tensor.math.kron
S
swtkiwi 已提交
1712 1713

${comment}
F
Feiyu Chan 已提交
1714 1715

    Args:
1716
        x (Variable): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1717
            float64, int32 or int64.
1718 1719
        y (Variable): the second operand of kron op, data type: float16,
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1720
            with x.
1721 1722
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1723 1724 1725 1726 1727 1728 1729
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
1730

F
Feiyu Chan 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = paddle.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1761
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1762 1763
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782


def cumsum(x, axis=None, dtype=None, name=None):
    """
    The cumulative sum of the elements along a given axis. The first element of the result is the same of the first element of the input. 

    Args:
        x (Tensor): Input of cumsum operator, the Tensor needed to be cumsumed. 
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the result of cumsum operator, output of cumsum operator. 

    Examples:
        .. code-block:: python
            
            import paddle
1783
            from paddle import to_variable
1784 1785
            import numpy as np

1786
            paddle.disable_static()
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            data_np = np.arange(12).reshape(3, 4)
            data = to_variable(data_np)

            y = paddle.cumsum(data)
            print(y.numpy())
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            print(y.numpy())
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            print(y.numpy())
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1831

J
Jack Zhou 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1849
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
            out = paddle.tensor.isfinite(x)
            print(out.numpy())  # [False  True  True False  True False False]
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1878
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
            out = paddle.tensor.isinf(x)
            print(out.numpy())  # [ True False False  True False False False]
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1907
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
            out = paddle.tensor.isnan(x)
            print(out.numpy())  # [False False False False False  True  True]
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1920 1921 1922 1923 1924
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1925
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1935
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1945
    
G
guofei 已提交
1946 1947 1948 1949 1950 1951 1952 1953
    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # the axis is a int element
1954 1955
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
            out1 = paddle.prod(x)
            print(out1.numpy())
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            print(out2.numpy())
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            print(out3.numpy())
            # [0.02 0.06 0.3  0.63]
            print(out3.numpy().dtype)
            # float32

            out4 = paddle.prod(x, 0, keepdim=True)
            print(out4.numpy())
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            print(out5.numpy())
            # [0 0 0 0]
            print(out5.numpy().dtype)
            # int64

            # the axis is list
1981 1982
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
            out6 = paddle.prod(y, [0, 1])
            print(out6.numpy())
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            print(out7.numpy())
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
2018
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
    """
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.disable_static()
2055
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2056 2057 2058 2059 2060 2061 2062 2063
            out = paddle.tanh(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2064
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2065 2066 2067 2068
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out