executor.cc 19.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
34
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
36
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
39

40
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
42 43
#endif

D
dzhwinter 已提交
44
DECLARE_bool(benchmark);
45
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
46
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
47 48 49

namespace paddle {
namespace framework {
X
Xin Pan 已提交
50 51 52 53 54
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
55

Q
Qiao Longfei 已提交
56
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
62 63 64 65 66 67 68 69 70 71 72
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    // FIXME(zjl): There is difference when ngraph and gc are both enabled
    // in unittests. I do not know why it happens. Maybe ngraph engine
    // would cache some variables?
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, garbage collection strategy is "
           "disabled in Executor";
    force_disable_gc = true;
  }
#endif
S
sneaxiy 已提交
73 74 75
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
76
  }
Z
Zeng Jinle 已提交
77 78 79 80

  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
81 82 83
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
84
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
85
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
86
  }
S
sneaxiy 已提交
87
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
88
}
Y
Yu Yang 已提交
89

Q
Qiao Longfei 已提交
90
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
91
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
92
}
Y
Yu Yang 已提交
93

D
dzhwinter 已提交
94
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache, unless explicitly
  // (as set in constructor) marked not to do so
  // this is needed to have mkl-dnn unit tests working
  if (platform::is_cpu_place(place_)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place_);
    dev_ctx->ResetBlobMap();
  }
#endif
}

Y
Yancey1989 已提交
110
void Executor::Close() {
W
Wu Yi 已提交
111
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
112 113
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
114 115 116
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
117
#endif
Y
Yancey1989 已提交
118
}
W
Wu Yi 已提交
119

L
Liu Yiqun 已提交
120 121 122
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
123 124 125 126 127 128 129 130 131 132 133 134 135 136

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
137
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
138 139
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
140 141
      } else {
        auto* ptr = scope->Var(var->Name());
142
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
143 144
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
145 146 147 148 149
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
150
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
151 152
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
153 154 155 156
    }
  }
}

157 158 159
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
D
dongdaxiang 已提交
160 161
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
162
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
163 164
  PADDLE_ENFORCE_EQ(success, true, "Fail to parse TrainerDesc from string:\n%s",
                    trainer_desc_str.c_str());
D
dongdaxiang 已提交
165 166 167 168 169 170 171 172
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
173
  trainer->SetScope(scope);
D
dongdaxiang 已提交
174 175 176 177 178
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
179 180 181 182 183 184
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
  PADDLE_ENFORCE_NE(trainer, nullptr,
                    "Trainer is nullptr, invoke InitForDataset first");
D
dongdaxiang 已提交
185 186 187 188 189 190
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
191

Y
Yu Yang 已提交
192
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
193 194 195
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
196
  platform::RecordBlock b(block_id);
197
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
198
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
199
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
200 201
}

202 203 204 205 206 207 208
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
209
    const BlockDesc& block,
L
Liu Yiqun 已提交
210
    const std::map<std::string, const LoDTensor*>& feed_targets,
211 212
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
213
  for (auto* op : block.AllOps()) {
214 215
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
216
      // The input variable's name of feed_op should be feed_holder_name.
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

232
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
233
      // When feed operator are present, so should be feed_holder.
234 235 236 237 238 239 240
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
241 242 243 244 245 246 247 248 249 250 251 252
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
253 254
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
255 256
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
257
  for (auto* op : block.AllOps()) {
258 259
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
260
      // The output variable's name of fetch_op should be fetch_holder_name.
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

276
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
277
      // When fetch operator are present, so should be fetch_holder.
278 279 280 281 282 283 284
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
285 286 287 288 289
  }

  return fetch_count > 0;
}

290 291 292
std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
293
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
294 295
}

296
void Executor::Run(const ProgramDesc& program, Scope* scope,
297 298
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
299 300
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
301
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
302
  platform::RecordBlock b(kProgramId);
303
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
304
  bool has_feed_ops =
305
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
306
  bool has_fetch_ops =
307
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
308 309

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
310
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
311
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
312 313
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
314
  }
315 316
  auto* global_block = copy_program->MutableBlock(0);

317
  if (!has_feed_ops) {
318 319
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
320
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
321 322 323
    feed_holder->SetPersistable(true);

    int i = 0;
324
    for (auto& feed_target : (*feed_targets)) {
325
      std::string var_name = feed_target.first;
M
minqiyang 已提交
326
      VLOG(3) << "feed target's name: " << var_name;
327 328 329 330 331 332 333 334 335 336 337 338 339

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

340
  if (!has_fetch_ops) {
341 342
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
343
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
344 345 346
    fetch_holder->SetPersistable(true);

    int i = 0;
347
    for (auto& fetch_target : (*fetch_targets)) {
348
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
349
      VLOG(3) << "fetch target's name: " << var_name;
350 351 352 353 354 355 356 357 358 359 360 361 362

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

363
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
364 365 366
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
367 368
}

Q
Qiao Longfei 已提交
369
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
370
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
371
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
372 373
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
374 375 376 377 378
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
379
#ifdef PADDLE_WITH_NGRAPH
380
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
381 382 383 384
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
385
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
386
  return ctx;
Y
Yu Yang 已提交
387 388
}

T
refine  
typhoonzero 已提交
389
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
390
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
391 392
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
393 394 395 396
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
397
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
398
  size_t idx = 0;
T
typhoonzero 已提交
399 400
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
401
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
402 403 404 405
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
406 407 408 409 410
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
411
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
412
    ++idx;
T
typhoonzero 已提交
413 414 415 416
  }
  return result;
}

Y
Yu Yang 已提交
417
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
418 419
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
420
  platform::RecordBlock b(kProgramId);
421
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
422 423 424 425
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
426 427
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
428
  }
Y
Yu Yang 已提交
429

S
sneaxiy 已提交
430
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
431
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
432
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
433 434
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
435
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
436
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
437 438
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
439
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
440 441 442
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
443
#endif
S
sneaxiy 已提交
444 445
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
446 447 448 449 450
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
451
  for (auto& op : ctx->ops_) {
452
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
453
    if (gc) {
S
sneaxiy 已提交
454
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
455
    }
Y
Yu Yang 已提交
456
  }
S
sneaxiy 已提交
457

S
fix bug  
sneaxiy 已提交
458
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
459

Q
qiaolongfei 已提交
460
  if (local_scope != scope) {
Y
Yu Yang 已提交
461
    scope->DeleteScope(local_scope);
462
  } else {
Q
qiaolongfei 已提交
463 464 465 466 467
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
468 469
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
470 471
      scope->DropKids();
    }
Y
Yu Yang 已提交
472 473 474
  }
}

475 476
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
477
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
478 479 480
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
481 482
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

483
  PADDLE_ENFORCE(
484
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
485 486
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
487
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
488 489
      "Program in the prepared context should has fetch_ops.");

490 491 492 493 494
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
495 496
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
497 498 499
    }
  }

W
Wu Yi 已提交
500
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
501 502 503 504 505 506

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
507
      *(*fetch_targets)[fetch_target_name] =
508 509 510 511 512
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

513 514
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
515
  VLOG(3) << "use_mkldnn=True";
516 517 518 519 520 521 522 523
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
524 525 526
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
527 528
#endif
}
Q
qijun 已提交
529 530
}  // namespace framework
}  // namespace paddle