buffered_reader.cc 19.4 KB
Newer Older
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/platform/device/device_wrapper.h"
19
#include "paddle/fluid/platform/profiler.h"
20
#include "paddle/fluid/platform/profiler/event_tracing.h"
21

22 23 24
#include "paddle/phi/backends/device_guard.h"
#include "paddle/phi/backends/device_manager.h"

Y
yuyang18 已提交
25 26 27
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
28
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
29
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
30 31
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
32 33 34 35
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
36 37 38 39
    position_.pop();
  }
}

Y
yuyang18 已提交
40 41
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
42 43 44
    const platform::Place &place,
    size_t buffer_size,
    bool pin_memory)
Y
yuyang18 已提交
45 46 47
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
48 49
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
50
  VLOG(1) << "BufferedReader";
51
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
52
  if (platform::is_gpu_place(place_) && !pin_memory) {
53
    int dev_idx = place_.device;
54 55 56 57 58 59 60 61 62 63 64
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
65 66 67

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
68
    int dev_idx = place_.device;
69 70 71 72 73 74 75 76 77 78 79
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
F
fwenguang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::MLUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::MluEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::MluStreamResourcePool::Instance().New(dev_idx);
  }
#endif
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::XPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::XpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::XpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (platform::is_custom_place(place_)) {
    auto stream = ((platform::CustomDeviceContext
                        *)(platform::DeviceContextPool::Instance().Get(place_)))
                      ->stream();
    custom_device_compute_stream_ =
        std::make_shared<phi::stream::Stream>(place_, stream);

    custom_device_events_.resize(buffer_size);
    for (auto &event : custom_device_events_) {
      event = std::make_shared<phi::event::Event>();
      event->Init(place_);
    }
    custom_device_stream_ = std::make_shared<phi::stream::Stream>();
    custom_device_stream_->Init(place_);
  }
#endif

Y
yuyang18 已提交
129
  cpu_buffer_.resize(buffer_size);
130
  cuda_buffer_.resize(buffer_size);
131
  npu_buffer_.resize(buffer_size);
F
fwenguang 已提交
132
  mlu_buffer_.resize(buffer_size);
133
  xpu_buffer_.resize(buffer_size);
134
  custom_device_buffer_.resize(buffer_size);
Y
yuyang18 已提交
135
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
136
}
F
fengjiayi 已提交
137

Y
yuyang18 已提交
138
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
139
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
140
    ReadAsync(i);
Y
yuyang18 已提交
141 142
  }
}
F
fengjiayi 已提交
143

Y
yuyang18 已提交
144
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
145 146 147
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
148

Y
yuyang18 已提交
149 150 151
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
152

153
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
154
    if (platform::is_gpu_place(place_)) {
155 156 157
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
158
      } else {
159
        PADDLE_ENFORCE_EQ(
160 161
            cuda.size(),
            cpu.size(),
162 163
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
164
      }
165 166 167 168 169 170 171 172 173 174 175 176 177 178
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
179
        platform::RecordEvent record_event(
180 181
            "BufferedReader:MemoryCopy",
            platform::TracerEventType::UserDefined,
182
            1);
183
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
184 185 186
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
187
        platform::SetDeviceId(place_.device);
188 189 190 191
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
192 193
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
194 195
            auto size = cpu[i].numel() *
                        paddle::framework::DataTypeSize(cpu[i].dtype());
196

197 198 199 200 201
            memory::Copy(cuda_pinned_place,
                         cuda_pinned_ptrs[i],
                         cpu[i].place(),
                         cpu[i].data(),
                         size);
202

203 204
            cuda[i].set_lod(cpu[i].lod());
          } else {
205 206 207 208
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
209 210 211 212 213 214 215 216 217 218 219 220 221 222
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
223

224 225 226
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
227
        platform::SetDeviceId(place_.device);
228
#ifdef PADDLE_WITH_HIP
229
        PADDLE_ENFORCE_GPU_SUCCESS(
230
            hipEventRecord(events_[i].get(), compute_stream_));
231
        PADDLE_ENFORCE_GPU_SUCCESS(
232 233
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
234
        PADDLE_ENFORCE_GPU_SUCCESS(
235
            cudaEventRecord(events_[i].get(), compute_stream_));
236
        PADDLE_ENFORCE_GPU_SUCCESS(
237
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
238
#endif
239

240
        platform::RecordEvent record_event(
241 242
            "BufferedReader:MemoryCopy",
            platform::TracerEventType::UserDefined,
243
            1);
244 245
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
246
          auto cpu_ptr = cpu[i].data();
247
          auto gpu_ptr = gpu_ptrs[i];
248
          auto size =
249
              cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
250
          if (platform::is_cuda_pinned_place(cpu_place)) {
251 252
            memory::Copy(
                place_, gpu_ptr, cpu_place, cpu_ptr, size, stream_.get());
253
          } else if ((platform::is_gpu_place(cpu_place))) {
254 255
            memory::Copy(
                place_, gpu_ptr, cpu_place, cpu_ptr, size, stream_.get());
256 257 258 259 260 261
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
262 263 264 265 266 267 268 269
            memory::Copy(
                cuda_pinned_place, cuda_pinned_ptr, cpu_place, cpu_ptr, size);
            memory::Copy(place_,
                         gpu_ptr,
                         cuda_pinned_place,
                         cuda_pinned_ptr,
                         size,
                         stream_.get());
270 271

            platform::GpuStreamSync(stream_.get());
272 273
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
274
        }
275
        platform::GpuStreamSync(stream_.get());
Y
yuyang18 已提交
276
      }
Y
yuyang18 已提交
277
    }
278 279 280 281 282 283 284 285 286
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
287 288
            npu.size(),
            cpu.size(),
289 290 291
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
292 293
                npu.size(),
                cpu.size()));
294 295 296 297 298 299 300 301 302 303
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

304
      platform::SetNPUDeviceId(place_.device);
305 306
      platform::NPUEventRecord(events_[i].get(), compute_stream_);
      platform::NPUStreamWaitEvent(stream_.get(), events_[i].get());
307

308 309 310
      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
311 312
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
313
        auto cpu_ptr = cpu[i].data();
314 315
        auto npu_ptr = npu_ptrs[i];
        auto size =
316
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
317
        if ((platform::is_npu_place(cpu_place))) {
318 319
          memory::Copy(
              place_, npu_ptr, cpu_place, cpu_ptr, size, stream_.get());
320
        } else {
321 322
          memory::Copy(
              place_, npu_ptr, cpu_place, cpu_ptr, size, stream_.get());
323
          platform::NPUStreamSync(stream_.get());
324 325 326
        }
        npu[i].set_lod(cpu[i].lod());
      }
327
      platform::NPUStreamSync(stream_.get());
328 329
    }
#endif
F
fwenguang 已提交
330 331 332 333 334 335 336 337

#ifdef PADDLE_WITH_MLU
    if (platform::is_mlu_place(place_)) {
      TensorVec &mlu = mlu_buffer_[i];
      if (mlu.empty()) {
        mlu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
338 339
            mlu.size(),
            cpu.size(),
F
fwenguang 已提交
340 341 342
            platform::errors::InvalidArgument(
                "Input tensor number on MLU and CPU devices are not matched. "
                "The number on MLU is %d, on CPU is %d",
343 344
                mlu.size(),
                cpu.size()));
F
fwenguang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
      }

      std::vector<void *> mlu_ptrs;
      mlu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        mlu[i].Resize(cpu[i].dims());
        mlu[i].set_layout(cpu[i].layout());
        mlu_ptrs.emplace_back(mlu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetMLUDeviceId(place_.device);
      PADDLE_ENFORCE_MLU_SUCCESS(
          cnPlaceNotifier(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_MLU_SUCCESS(cnWaitNotifier(events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto mlu_ptr = mlu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_mlu_place(cpu_place))) {
370 371
          memory::Copy(
              place_, mlu_ptr, cpu_place, cpu_ptr, size, stream_.get());
F
fwenguang 已提交
372
        } else {
373 374
          memory::Copy(
              place_, mlu_ptr, cpu_place, cpu_ptr, size, stream_.get());
F
fwenguang 已提交
375 376 377 378 379 380 381
          platform::MLUStreamSync(stream_.get());
        }
        mlu[i].set_lod(cpu[i].lod());
      }
      platform::MLUStreamSync(stream_.get());
    }
#endif
382 383 384 385 386 387 388 389

#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(place_)) {
      TensorVec &xpu = xpu_buffer_[i];
      if (xpu.empty()) {
        xpu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
390 391
            xpu.size(),
            cpu.size(),
392 393 394
            platform::errors::InvalidArgument(
                "Input tensor number on XPU and CPU devices are not matched. "
                "The number on XPU is %d, on CPU is %d",
395 396
                xpu.size(),
                cpu.size()));
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      }

      std::vector<void *> xpu_ptrs;
      xpu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        xpu[i].Resize(cpu[i].dims());
        xpu[i].set_layout(cpu[i].layout());
        xpu_ptrs.emplace_back(xpu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::XPUDeviceGuard gurad(place_.device);
      int r = xpu_event_record(events_[i].get(), compute_stream_);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_event_record");
      r = xpu_stream_wait_event(stream_.get(), events_[i].get());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_stream_wait_event");

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto xpu_ptr = xpu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        // TODO(zhanghuan) for now hardware not support xpu_memcpy_async, maybe
        // KL3
        if ((platform::is_xpu_place(cpu_place))) {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
          platform::XPUStreamSync(stream_.get());
        } else {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
        }
        xpu[i].set_lod(cpu[i].lod());
      }
      platform::XPUStreamSync(stream_.get());
    }
#endif
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

#ifdef PADDLE_WITH_CUSTOM_DEVICE
    if (platform::is_custom_place(place_)) {
      TensorVec &custom_device = custom_device_buffer_[i];
      if (custom_device.empty()) {
        custom_device.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(custom_device.size(),
                          cpu.size(),
                          platform::errors::InvalidArgument(
                              "Input tensor number on CustomDevice and CPU "
                              "devices are not matched. "
                              "The number on CustomDevice is %d, on CPU is %d",
                              custom_device.size(),
                              cpu.size()));
      }

      std::vector<void *> custom_device_ptrs;
      custom_device_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        custom_device[i].Resize(cpu[i].dims());
        custom_device[i].set_layout(cpu[i].layout());
        custom_device_ptrs.emplace_back(
            custom_device[i].mutable_data(place_, cpu[i].type()));
      }

      phi::DeviceManager::SetDevice(place_);
      phi::DeviceManager::GetDeviceWithPlace(place_)->RecordEvent(
          custom_device_events_[i].get(), custom_device_compute_stream_.get());
      phi::DeviceManager::GetDeviceWithPlace(place_)->StreamWaitEvent(
          custom_device_stream_.get(), custom_device_events_[i].get());

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto custom_device_ptr = custom_device_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_custom_place(cpu_place))) {
          memory::Copy(place_, custom_device_ptr, cpu_place, cpu_ptr, size);
          custom_device_stream_->Synchronize();
        } else {
          memory::Copy(place_, custom_device_ptr, cpu_place, cpu_ptr, size);
        }
        custom_device[i].set_lod(cpu[i].lod());
      }
      custom_device_stream_->Synchronize();
    }
#endif
Y
yuyang18 已提交
487
    return i;
Y
yuyang18 已提交
488 489
  }));
}
F
fengjiayi 已提交
490

Y
yuyang18 已提交
491
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
492
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
493
  reader_->Shutdown();
Y
yuyang18 已提交
494 495 496
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
497
  prev_pos_ = -1UL;
Y
yuyang18 已提交
498
}
F
fengjiayi 已提交
499

Y
yuyang18 已提交
500 501
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
502
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
503
}
F
fengjiayi 已提交
504

Y
yuyang18 已提交
505
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
506 507 508 509 510 511 512 513 514 515 516 517
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

518
  if (platform::is_gpu_place(place_)) {
519
    *out = std::move(cuda_buffer_[i]);
520
  } else if (platform::is_npu_place(place_)) {
521
    *out = std::move(npu_buffer_[i]);
F
fwenguang 已提交
522 523
  } else if (platform::is_mlu_place(place_)) {
    *out = std::move(mlu_buffer_[i]);
524 525
  } else if (platform::is_xpu_place(place_)) {
    *out = std::move(xpu_buffer_[i]);
526 527
  } else if (platform::is_custom_place(place_)) {
    *out = std::move(custom_device_buffer_[i]);
528 529 530
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
531 532 533 534 535 536 537 538

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
539 540 541 542 543
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle