buffered_reader.cc 16.1 KB
Newer Older
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16
#include "paddle/fluid/framework/convert_utils.h"
17
#include "paddle/fluid/platform/device/device_wrapper.h"
18
#include "paddle/fluid/platform/profiler.h"
19
#include "paddle/fluid/platform/profiler/event_tracing.h"
20

Y
yuyang18 已提交
21 22 23
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
24
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
25
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
26 27
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
28 29 30 31
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
32 33 34 35
    position_.pop();
  }
}

Y
yuyang18 已提交
36 37
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
38
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
39 40 41
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
42 43
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
44
  VLOG(1) << "BufferedReader";
45
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
46
  if (platform::is_gpu_place(place_) && !pin_memory) {
47
    int dev_idx = place_.device;
48 49 50 51 52 53 54 55 56 57 58
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
59 60 61

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
62
    int dev_idx = place_.device;
63 64 65 66 67 68 69 70 71 72 73
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
F
fwenguang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::MLUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::MluEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::MluStreamResourcePool::Instance().New(dev_idx);
  }
#endif
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::XPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::XpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::XpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif

Y
yuyang18 已提交
105
  cpu_buffer_.resize(buffer_size);
106
  cuda_buffer_.resize(buffer_size);
107
  npu_buffer_.resize(buffer_size);
F
fwenguang 已提交
108
  mlu_buffer_.resize(buffer_size);
109
  xpu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
110
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
111
}
F
fengjiayi 已提交
112

Y
yuyang18 已提交
113
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
114
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
115
    ReadAsync(i);
Y
yuyang18 已提交
116 117
  }
}
F
fengjiayi 已提交
118

Y
yuyang18 已提交
119
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
120 121 122
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
123

Y
yuyang18 已提交
124 125 126
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
127

128
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
129
    if (platform::is_gpu_place(place_)) {
130 131 132
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
133
      } else {
134
        PADDLE_ENFORCE_EQ(
135
            cuda.size(), cpu.size(),
136 137
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
138
      }
139 140 141 142 143 144 145 146 147 148 149 150 151 152
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
153 154 155
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
156
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
157 158 159
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
160
        platform::SetDeviceId(place_.device);
161 162 163 164
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
165 166
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
167 168
            auto size = cpu[i].numel() *
                        paddle::framework::DataTypeSize(cpu[i].dtype());
169

170
            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i], cpu[i].place(),
171
                         cpu[i].data(), size);
172

173 174
            cuda[i].set_lod(cpu[i].lod());
          } else {
175 176 177 178
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
179 180 181 182 183 184 185 186 187 188 189 190 191 192
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
193

194 195 196
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
197
        platform::SetDeviceId(place_.device);
198
#ifdef PADDLE_WITH_HIP
199
        PADDLE_ENFORCE_GPU_SUCCESS(
200
            hipEventRecord(events_[i].get(), compute_stream_));
201
        PADDLE_ENFORCE_GPU_SUCCESS(
202 203
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
204
        PADDLE_ENFORCE_GPU_SUCCESS(
205
            cudaEventRecord(events_[i].get(), compute_stream_));
206
        PADDLE_ENFORCE_GPU_SUCCESS(
207
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
208
#endif
209

210 211 212
        platform::RecordEvent record_event(
            "BufferedReader:MemoryCopy", platform::TracerEventType::UserDefined,
            1);
213 214
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
215
          auto cpu_ptr = cpu[i].data();
216
          auto gpu_ptr = gpu_ptrs[i];
217
          auto size =
218
              cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
219
          if (platform::is_cuda_pinned_place(cpu_place)) {
220 221
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
222
          } else if ((platform::is_gpu_place(cpu_place))) {
223 224
            memory::Copy(place_, gpu_ptr, cpu_place, cpu_ptr, size,
                         stream_.get());
225 226 227 228 229 230
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
231 232 233 234
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr, cpu_place, cpu_ptr,
                         size);
            memory::Copy(place_, gpu_ptr, cuda_pinned_place, cuda_pinned_ptr,
                         size, stream_.get());
235 236

            platform::GpuStreamSync(stream_.get());
237 238
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
239
        }
240
        platform::GpuStreamSync(stream_.get());
Y
yuyang18 已提交
241
      }
Y
yuyang18 已提交
242
    }
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            npu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
                npu.size(), cpu.size()));
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

267
      platform::SetNPUDeviceId(place_.device);
268 269
      platform::NPUEventRecord(events_[i].get(), compute_stream_);
      platform::NPUStreamWaitEvent(stream_.get(), events_[i].get());
270

271 272 273
      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
274 275
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
276
        auto cpu_ptr = cpu[i].data();
277 278
        auto npu_ptr = npu_ptrs[i];
        auto size =
279
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
280
        if ((platform::is_npu_place(cpu_place))) {
281 282
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
283
        } else {
284 285
          memory::Copy(place_, npu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
286
          platform::NPUStreamSync(stream_.get());
287 288 289
        }
        npu[i].set_lod(cpu[i].lod());
      }
290
      platform::NPUStreamSync(stream_.get());
291 292
    }
#endif
F
fwenguang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

#ifdef PADDLE_WITH_MLU
    if (platform::is_mlu_place(place_)) {
      TensorVec &mlu = mlu_buffer_[i];
      if (mlu.empty()) {
        mlu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            mlu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on MLU and CPU devices are not matched. "
                "The number on MLU is %d, on CPU is %d",
                mlu.size(), cpu.size()));
      }

      std::vector<void *> mlu_ptrs;
      mlu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        mlu[i].Resize(cpu[i].dims());
        mlu[i].set_layout(cpu[i].layout());
        mlu_ptrs.emplace_back(mlu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetMLUDeviceId(place_.device);
      PADDLE_ENFORCE_MLU_SUCCESS(
          cnPlaceNotifier(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_MLU_SUCCESS(cnWaitNotifier(events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto mlu_ptr = mlu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_mlu_place(cpu_place))) {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
        } else {
          memory::Copy(place_, mlu_ptr, cpu_place, cpu_ptr, size,
                       stream_.get());
          platform::MLUStreamSync(stream_.get());
        }
        mlu[i].set_lod(cpu[i].lod());
      }
      platform::MLUStreamSync(stream_.get());
    }
#endif
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(place_)) {
      TensorVec &xpu = xpu_buffer_[i];
      if (xpu.empty()) {
        xpu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            xpu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on XPU and CPU devices are not matched. "
                "The number on XPU is %d, on CPU is %d",
                xpu.size(), cpu.size()));
      }

      std::vector<void *> xpu_ptrs;
      xpu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        xpu[i].Resize(cpu[i].dims());
        xpu[i].set_layout(cpu[i].layout());
        xpu_ptrs.emplace_back(xpu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::XPUDeviceGuard gurad(place_.device);
      int r = xpu_event_record(events_[i].get(), compute_stream_);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_event_record");
      r = xpu_stream_wait_event(stream_.get(), events_[i].get());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_stream_wait_event");

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto xpu_ptr = xpu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        // TODO(zhanghuan) for now hardware not support xpu_memcpy_async, maybe
        // KL3
        if ((platform::is_xpu_place(cpu_place))) {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
          platform::XPUStreamSync(stream_.get());
        } else {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
        }
        xpu[i].set_lod(cpu[i].lod());
      }
      platform::XPUStreamSync(stream_.get());
    }
#endif
Y
yuyang18 已提交
394
    return i;
Y
yuyang18 已提交
395 396
  }));
}
F
fengjiayi 已提交
397

Y
yuyang18 已提交
398
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
399
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
400
  reader_->Shutdown();
Y
yuyang18 已提交
401 402 403
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
404
  prev_pos_ = -1UL;
Y
yuyang18 已提交
405
}
F
fengjiayi 已提交
406

Y
yuyang18 已提交
407 408
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
409
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
410
}
F
fengjiayi 已提交
411

Y
yuyang18 已提交
412
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
413 414 415 416 417 418 419 420 421 422 423 424
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

425
  if (platform::is_gpu_place(place_)) {
426
    *out = std::move(cuda_buffer_[i]);
427
  } else if (platform::is_npu_place(place_)) {
428
    *out = std::move(npu_buffer_[i]);
F
fwenguang 已提交
429 430
  } else if (platform::is_mlu_place(place_)) {
    *out = std::move(mlu_buffer_[i]);
431 432
  } else if (platform::is_xpu_place(place_)) {
    *out = std::move(xpu_buffer_[i]);
433 434 435
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
436 437 438 439 440 441 442 443

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
444 445 446 447 448
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle