buffered_reader.cc 16.3 KB
Newer Older
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/platform/device/device_wrapper.h"
19
#include "paddle/fluid/platform/profiler.h"
20
#include "paddle/fluid/platform/profiler/event_tracing.h"
21

Y
yuyang18 已提交
22 23 24
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
25
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
26
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
27 28
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
29 30 31 32
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
33 34 35 36
    position_.pop();
  }
}

Y
yuyang18 已提交
37 38
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
39 40 41
    const platform::Place &place,
    size_t buffer_size,
    bool pin_memory)
Y
yuyang18 已提交
42 43 44
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
45 46
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
47
  VLOG(1) << "BufferedReader";
48
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
49
  if (platform::is_gpu_place(place_) && !pin_memory) {
50
    int dev_idx = place_.device;
51 52 53 54 55 56 57 58 59 60 61
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
62 63 64

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
65
    int dev_idx = place_.device;
66 67 68 69 70 71 72 73 74 75 76
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
F
fwenguang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::MLUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::MluEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::MluStreamResourcePool::Instance().New(dev_idx);
  }
#endif
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(place_)) {
    int dev_idx = place_.device;
    compute_stream_ =
        ((platform::XPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::XpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::XpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif

Y
yuyang18 已提交
108
  cpu_buffer_.resize(buffer_size);
109
  cuda_buffer_.resize(buffer_size);
110
  npu_buffer_.resize(buffer_size);
F
fwenguang 已提交
111
  mlu_buffer_.resize(buffer_size);
112
  xpu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
113
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
114
}
F
fengjiayi 已提交
115

Y
yuyang18 已提交
116
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
117
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
118
    ReadAsync(i);
Y
yuyang18 已提交
119 120
  }
}
F
fengjiayi 已提交
121

Y
yuyang18 已提交
122
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
123 124 125
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
126

Y
yuyang18 已提交
127 128 129
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
130

131
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
132
    if (platform::is_gpu_place(place_)) {
133 134 135
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
136
      } else {
137
        PADDLE_ENFORCE_EQ(
138 139
            cuda.size(),
            cpu.size(),
140 141
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
142
      }
143 144 145 146 147 148 149 150 151 152 153 154 155 156
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
157
        platform::RecordEvent record_event(
158 159
            "BufferedReader:MemoryCopy",
            platform::TracerEventType::UserDefined,
160
            1);
161
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
162 163 164
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
165
        platform::SetDeviceId(place_.device);
166 167 168 169
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
170 171
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
172 173
            auto size = cpu[i].numel() *
                        paddle::framework::DataTypeSize(cpu[i].dtype());
174

175 176 177 178 179
            memory::Copy(cuda_pinned_place,
                         cuda_pinned_ptrs[i],
                         cpu[i].place(),
                         cpu[i].data(),
                         size);
180

181 182
            cuda[i].set_lod(cpu[i].lod());
          } else {
183 184 185 186
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
187 188 189 190 191 192 193 194 195 196 197 198 199 200
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
201

202 203 204
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
205
        platform::SetDeviceId(place_.device);
206
#ifdef PADDLE_WITH_HIP
207
        PADDLE_ENFORCE_GPU_SUCCESS(
208
            hipEventRecord(events_[i].get(), compute_stream_));
209
        PADDLE_ENFORCE_GPU_SUCCESS(
210 211
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
212
        PADDLE_ENFORCE_GPU_SUCCESS(
213
            cudaEventRecord(events_[i].get(), compute_stream_));
214
        PADDLE_ENFORCE_GPU_SUCCESS(
215
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
216
#endif
217

218
        platform::RecordEvent record_event(
219 220
            "BufferedReader:MemoryCopy",
            platform::TracerEventType::UserDefined,
221
            1);
222 223
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
224
          auto cpu_ptr = cpu[i].data();
225
          auto gpu_ptr = gpu_ptrs[i];
226
          auto size =
227
              cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
228
          if (platform::is_cuda_pinned_place(cpu_place)) {
229 230
            memory::Copy(
                place_, gpu_ptr, cpu_place, cpu_ptr, size, stream_.get());
231
          } else if ((platform::is_gpu_place(cpu_place))) {
232 233
            memory::Copy(
                place_, gpu_ptr, cpu_place, cpu_ptr, size, stream_.get());
234 235 236 237 238 239
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
240 241 242 243 244 245 246 247
            memory::Copy(
                cuda_pinned_place, cuda_pinned_ptr, cpu_place, cpu_ptr, size);
            memory::Copy(place_,
                         gpu_ptr,
                         cuda_pinned_place,
                         cuda_pinned_ptr,
                         size,
                         stream_.get());
248 249

            platform::GpuStreamSync(stream_.get());
250 251
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
252
        }
253
        platform::GpuStreamSync(stream_.get());
Y
yuyang18 已提交
254
      }
Y
yuyang18 已提交
255
    }
256 257 258 259 260 261 262 263 264
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
265 266
            npu.size(),
            cpu.size(),
267 268 269
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
270 271
                npu.size(),
                cpu.size()));
272 273 274 275 276 277 278 279 280 281
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

282
      platform::SetNPUDeviceId(place_.device);
283 284
      platform::NPUEventRecord(events_[i].get(), compute_stream_);
      platform::NPUStreamWaitEvent(stream_.get(), events_[i].get());
285

286 287 288
      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
289 290
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
291
        auto cpu_ptr = cpu[i].data();
292 293
        auto npu_ptr = npu_ptrs[i];
        auto size =
294
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
295
        if ((platform::is_npu_place(cpu_place))) {
296 297
          memory::Copy(
              place_, npu_ptr, cpu_place, cpu_ptr, size, stream_.get());
298
        } else {
299 300
          memory::Copy(
              place_, npu_ptr, cpu_place, cpu_ptr, size, stream_.get());
301
          platform::NPUStreamSync(stream_.get());
302 303 304
        }
        npu[i].set_lod(cpu[i].lod());
      }
305
      platform::NPUStreamSync(stream_.get());
306 307
    }
#endif
F
fwenguang 已提交
308 309 310 311 312 313 314 315

#ifdef PADDLE_WITH_MLU
    if (platform::is_mlu_place(place_)) {
      TensorVec &mlu = mlu_buffer_[i];
      if (mlu.empty()) {
        mlu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
316 317
            mlu.size(),
            cpu.size(),
F
fwenguang 已提交
318 319 320
            platform::errors::InvalidArgument(
                "Input tensor number on MLU and CPU devices are not matched. "
                "The number on MLU is %d, on CPU is %d",
321 322
                mlu.size(),
                cpu.size()));
F
fwenguang 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
      }

      std::vector<void *> mlu_ptrs;
      mlu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        mlu[i].Resize(cpu[i].dims());
        mlu[i].set_layout(cpu[i].layout());
        mlu_ptrs.emplace_back(mlu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetMLUDeviceId(place_.device);
      PADDLE_ENFORCE_MLU_SUCCESS(
          cnPlaceNotifier(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_MLU_SUCCESS(cnWaitNotifier(events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto mlu_ptr = mlu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        if ((platform::is_mlu_place(cpu_place))) {
348 349
          memory::Copy(
              place_, mlu_ptr, cpu_place, cpu_ptr, size, stream_.get());
F
fwenguang 已提交
350
        } else {
351 352
          memory::Copy(
              place_, mlu_ptr, cpu_place, cpu_ptr, size, stream_.get());
F
fwenguang 已提交
353 354 355 356 357 358 359
          platform::MLUStreamSync(stream_.get());
        }
        mlu[i].set_lod(cpu[i].lod());
      }
      platform::MLUStreamSync(stream_.get());
    }
#endif
360 361 362 363 364 365 366 367

#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(place_)) {
      TensorVec &xpu = xpu_buffer_[i];
      if (xpu.empty()) {
        xpu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
368 369
            xpu.size(),
            cpu.size(),
370 371 372
            platform::errors::InvalidArgument(
                "Input tensor number on XPU and CPU devices are not matched. "
                "The number on XPU is %d, on CPU is %d",
373 374
                xpu.size(),
                cpu.size()));
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      }

      std::vector<void *> xpu_ptrs;
      xpu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        xpu[i].Resize(cpu[i].dims());
        xpu[i].set_layout(cpu[i].layout());
        xpu_ptrs.emplace_back(xpu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::XPUDeviceGuard gurad(place_.device);
      int r = xpu_event_record(events_[i].get(), compute_stream_);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_event_record");
      r = xpu_stream_wait_event(stream_.get(), events_[i].get());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "xpu_stream_wait_event");

      platform::RecordEvent record_event("BufferedReader:MemoryCopy",
                                         platform::TracerEventType::UserDefined,
                                         1);
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data();
        auto xpu_ptr = xpu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::DataTypeSize(cpu[i].dtype());
        // TODO(zhanghuan) for now hardware not support xpu_memcpy_async, maybe
        // KL3
        if ((platform::is_xpu_place(cpu_place))) {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
          platform::XPUStreamSync(stream_.get());
        } else {
          memory::Copy(place_, xpu_ptr, cpu_place, cpu_ptr, size);
        }
        xpu[i].set_lod(cpu[i].lod());
      }
      platform::XPUStreamSync(stream_.get());
    }
#endif
Y
yuyang18 已提交
413
    return i;
Y
yuyang18 已提交
414 415
  }));
}
F
fengjiayi 已提交
416

Y
yuyang18 已提交
417
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
418
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
419
  reader_->Shutdown();
Y
yuyang18 已提交
420 421 422
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
423
  prev_pos_ = -1UL;
Y
yuyang18 已提交
424
}
F
fengjiayi 已提交
425

Y
yuyang18 已提交
426 427
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
428
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
429
}
F
fengjiayi 已提交
430

Y
yuyang18 已提交
431
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
432 433 434 435 436 437 438 439 440 441 442 443
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

444
  if (platform::is_gpu_place(place_)) {
445
    *out = std::move(cuda_buffer_[i]);
446
  } else if (platform::is_npu_place(place_)) {
447
    *out = std::move(npu_buffer_[i]);
F
fwenguang 已提交
448 449
  } else if (platform::is_mlu_place(place_)) {
    *out = std::move(mlu_buffer_[i]);
450 451
  } else if (platform::is_xpu_place(place_)) {
    *out = std::move(xpu_buffer_[i]);
452 453 454
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
455 456 457 458 459 460 461 462

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
463 464 465 466 467
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle