buffered_reader.cc 11.8 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16
#include "paddle/fluid/platform/profiler.h"
17

Y
yuyang18 已提交
18 19 20
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
21
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
22
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
23 24
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
25 26 27 28
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
29 30 31 32
    position_.pop();
  }
}

Y
yuyang18 已提交
33 34
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
35
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
36 37 38
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
39 40
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
41
  VLOG(1) << "BufferedReader";
42
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
43 44 45 46 47 48 49 50 51 52 53 54 55
  if (platform::is_gpu_place(place_) && !pin_memory) {
    int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
    int dev_idx = BOOST_GET_CONST(platform::NPUPlace, place_).device;
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
71
  is_same_place_ = false;
Y
yuyang18 已提交
72
  cpu_buffer_.resize(buffer_size);
73
  cuda_buffer_.resize(buffer_size);
74
  npu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
75
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
76
}
F
fengjiayi 已提交
77

Y
yuyang18 已提交
78
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
79
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
80
    ReadAsync(i);
Y
yuyang18 已提交
81 82
  }
}
F
fengjiayi 已提交
83

Y
yuyang18 已提交
84
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
85 86 87
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
88

Y
yuyang18 已提交
89 90 91
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
92

93
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
94
    if (platform::is_gpu_place(place_)) {
95 96 97
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
98
      } else {
99
        PADDLE_ENFORCE_EQ(
100
            cuda.size(), cpu.size(),
101 102
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
103
      }
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
119 120 121 122 123 124
        // NODE(chenwehiang): When we use CUDAPinned Memory, we need call
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
            cuda_pinned_ptrs.emplace_back(
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type()));
            auto size =
                cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());

            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i],
                         BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()),
                         cpu[i].data<void>(), size);
            cuda[i].set_lod(cpu[i].lod());
          } else {
            // we set same place flag & use cpu[i] directly
            is_same_place_ = true;
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
155

156 157 158 159 160
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
161 162 163 164 165 166
#ifdef PADDLE_WITH_HIP
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
167 168 169 170
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
171
#endif
172 173 174 175 176 177

        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
          auto cpu_ptr = cpu[i].data<void>();
          auto gpu_ptr = gpu_ptrs[i];
178 179
          auto size =
              cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
          if (platform::is_cuda_pinned_place(cpu_place)) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else if ((platform::is_gpu_place(cpu_place))) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr,
                         BOOST_GET_CONST(platform::CPUPlace, cpu_place),
                         cpu_ptr, size);
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         cuda_pinned_place, cuda_pinned_ptr, size,
                         stream_.get());
200 201 202
#ifdef PADDLE_WITH_HIP
            PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
203
            PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
204
#endif
205 206
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
207
        }
208 209 210
#ifdef PADDLE_WITH_HIP
        PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
211
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
212
#endif
Y
yuyang18 已提交
213
      }
Y
yuyang18 已提交
214
    }
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            npu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
                npu.size(), cpu.size()));
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetNPUDeviceId(
          BOOST_GET_CONST(platform::NPUPlace, place_).device);
      PADDLE_ENFORCE_NPU_SUCCESS(
          aclrtRecordEvent(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_NPU_SUCCESS(
          aclrtStreamWaitEvent(stream_.get(), events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy");
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data<void>();
        auto npu_ptr = npu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
        if ((platform::is_npu_place(cpu_place))) {
          memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
                       BOOST_GET_CONST(platform::NPUPlace, cpu_place), cpu_ptr,
                       size, stream_.get());
        } else {
          memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
                       BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr,
                       size, stream_.get());
          PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
        }
        npu[i].set_lod(cpu[i].lod());
      }
      PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
    }
#endif
Y
yuyang18 已提交
268
    return i;
Y
yuyang18 已提交
269 270
  }));
}
F
fengjiayi 已提交
271

Y
yuyang18 已提交
272
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
273
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
274
  reader_->Shutdown();
Y
yuyang18 已提交
275 276 277
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
278
  prev_pos_ = -1UL;
Y
yuyang18 已提交
279
}
F
fengjiayi 已提交
280

Y
yuyang18 已提交
281 282
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
283
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
284
}
F
fengjiayi 已提交
285

Y
yuyang18 已提交
286
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
287 288 289 290 291 292 293 294 295 296 297 298
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

299 300 301 302 303 304 305
  if (platform::is_gpu_place(place_) && !is_same_place_) {
    *out = std::move(cuda_buffer_[i]);
  } else if (platform::is_npu_place(place_) && !is_same_place_) {
    *out = std::move(npu_buffer_[i]);
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
306 307 308 309 310 311 312 313

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
314 315 316 317 318
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle