test_imperative_double_grad.py 26.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
H
hong 已提交
16
import paddle
17
from paddle.fluid.wrapped_decorator import wrap_decorator
Z
Zeng Jinle 已提交
18
from paddle.vision.models import resnet50, resnet101
19 20 21
import unittest
from unittest import TestCase
import numpy as np
22
import paddle.compat as cpt
W
Weilong Wu 已提交
23
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
24
import paddle.fluid.core as core
25 26 27


def _dygraph_guard_(func):
28

29
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
30
        if fluid._non_static_mode():
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


47
class TestEagerGrad(TestCase):
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def func_simple_example_eager_grad(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        out = paddle.matmul(x, y)
        dx = fluid.dygraph.grad(out, x)

        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))

        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
64
        np.testing.assert_allclose(dx[0].numpy(), expected_dx, rtol=1e-05)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    def test_simple_example_eager_grad(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad()
        self.func_simple_example_eager_grad()

    def func_simple_example_eager_grad_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        dx = fluid.dygraph.grad(out, [x, z], allow_unused=True)
        dout = np.ones_like(np_y)
        expected_dx = np.matmul(dout, np.transpose(np_y))
86
        np.testing.assert_allclose(dx[0].numpy(), expected_dx, rtol=1e-05)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        # stop_gradient = !create_graph, create_graph default false
        self.assertEqual(dx[0].stop_gradient, True)
        # x is unused input in the graph
        self.assertEqual(dx[1], None)

    def test_simple_example_eager_grad_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_allow_unused()
        self.func_simple_example_eager_grad_allow_unused()

    def func_simple_example_eager_grad_not_allow_unused(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # allow_unused is false in default
            dx = fluid.dygraph.grad(out, [x, z])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_simple_example_eager_grad_not_allow_unused(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_not_allow_unused()
        self.func_simple_example_eager_grad_not_allow_unused()

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def func_simple_example_eager_grad_duplicate_input(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate input will arise RuntimeError errors
            dx = fluid.dygraph.grad(out, [x, x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_input(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_input()
        self.func_simple_example_eager_grad_duplicate_input()

    def func_simple_example_eager_grad_duplicate_output(self):
        np.random.seed(2021)
        paddle.set_device('cpu')
        np_x = np.random.random((3, 3))
        np_y = np.random.random((3, 1))
        np_z = np.random.random((3, 1))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64", stop_gradient=False)
        z = paddle.to_tensor(np_z, dtype="float64", stop_gradient=False)
        out_z = paddle.nn.functional.sigmoid(z)
        out = paddle.matmul(x, y)

        try:
            # duplicate output will arise RuntimeError errors
            dx = fluid.dygraph.grad([out, out], [x])
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("duplicate") > 0

    def test_simple_example_eager_grad_duplicate_output(self):
        with _test_eager_guard():
            self.func_simple_example_eager_grad_duplicate_output()
        self.func_simple_example_eager_grad_duplicate_output()

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def test_simple_example_eager_two_grad_output(self):
        with _test_eager_guard():
            x1 = paddle.to_tensor([1.0, 2.0])
            x1.stop_gradient = False
            x2 = paddle.to_tensor([1.0, 2.0])
            x2.stop_gradient = False
            out1 = x1 * 2
            out2 = x2 * 2

            dout2_record_by_hook = []

            def record_hook(grad):
                dout2_record_by_hook.append(grad)

            out2.register_hook(record_hook)

            out3 = paddle.multiply(out1, out2)
            out4 = paddle.mean(out3)
            egr_dout2, egr_dout3 = paddle.grad([out4], [out2, out3])

189 190
            np.testing.assert_array_equal(dout2_record_by_hook[0].numpy(),
                                          np.array([1.0, 2.0]))
191 192 193 194 195 196 197 198 199 200 201 202 203 204

        x1 = paddle.to_tensor([1.0, 2.0])
        x1.stop_gradient = False
        x2 = paddle.to_tensor([1.0, 2.0])
        x2.stop_gradient = False
        out1 = x1 * 2
        out2 = x2 * 2

        out3 = paddle.multiply(out1, out2)
        out4 = paddle.mean(out3)
        dout2, dout3 = paddle.grad([out4], [out2, out3])

        self.assertEqual(dout2.stop_gradient, egr_dout2.stop_gradient)
        self.assertEqual(dout3.stop_gradient, egr_dout3.stop_gradient)
205 206
        np.testing.assert_array_equal(dout2.numpy(), egr_dout2.numpy())
        np.testing.assert_array_equal(dout3.numpy(), egr_dout3.numpy())
207

208

209
class TestDygraphDoubleGrad(TestCase):
210

211 212 213 214 215 216 217 218
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 10]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
Z
Zeng Jinle 已提交
219 220 221 222
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
223
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
224 225 226 227 228 229 230
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
231 232

    @dygraph_guard
233
    def func_exception(self):
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
256 257
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
258 259

        with self.assertRaises(AssertionError):
Z
Zeng Jinle 已提交
260
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)
261

262 263 264 265 266
    def test_exception(self):
        with _test_eager_guard():
            self.func_exception()
        self.func_exception()

267
    @dygraph_guard
268
    def func_simple_example(self):
269 270 271 272 273
        x = random_var(self.shape)
        x.stop_gradient = False
        y = x + 1

        for create_graph in [False, True]:
274 275 276
            dx, = self.grad([x], [x],
                            create_graph=create_graph,
                            retain_graph=True)
277 278 279 280
            self.assertEqual(dx.shape, x.shape)
            self.assertTrue(np.all(dx.numpy() == 1))
            self.assertNotEqual(dx.stop_gradient, create_graph)

281 282 283
            dx_mul_2, = self.grad([y, x], [x],
                                  create_graph=create_graph,
                                  retain_graph=True)
284 285 286 287
            self.assertEqual(dx_mul_2.shape, x.shape)
            self.assertTrue(np.all(dx_mul_2.numpy() == 2))
            self.assertNotEqual(dx_mul_2.stop_gradient, create_graph)

288 289 290
            none_grad, = self.grad([x], [y],
                                   create_graph=create_graph,
                                   allow_unused=True)
291 292
            self.assertTrue(none_grad is None)

293 294
            grad_with_none_and_not_none, = self.grad([x, y], [y],
                                                     create_graph=create_graph)
295 296 297 298 299
            self.assertTrue(grad_with_none_and_not_none.shape, x.shape)
            self.assertTrue(np.all(grad_with_none_and_not_none.numpy() == 1))
            self.assertNotEqual(grad_with_none_and_not_none.stop_gradient,
                                create_graph)

300 301 302 303 304
    def test_simple_example(self):
        with _test_eager_guard():
            self.func_simple_example()
        self.func_simple_example()

305
    @dygraph_guard
306 307 308 309 310 311 312 313 314 315 316 317 318 319
    def func_example_no_grad_vars(self):
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

320 321 322
        dx_actual, = self.grad([w_mean], [x],
                               create_graph=True,
                               no_grad_vars=[y2])
323 324 325 326 327 328 329

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')

330
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
331 332 333 334 335 336 337 338

    def test_example_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_no_grad_vars()
        self.func_example_no_grad_vars()

    @dygraph_guard
    def func_none_one_initial_gradient(self):
339 340 341 342 343 344
        numel = 1
        for s in self.shape:
            numel *= s

        half_numel = int(numel / 2)
        half_x_positive = np.random.uniform(low=1, high=2, size=[half_numel])
345 346 347 348 349
        half_x_negative = np.random.uniform(low=-2,
                                            high=-1,
                                            size=[numel - half_numel])
        x_np = np.array(list(half_x_positive) +
                        list(half_x_negative)).astype('float32')
350 351 352
        np.random.shuffle(x_np)

        x = fluid.dygraph.to_variable(x_np)
353 354
        x.stop_gradient = False

355 356
        alpha = 0.2
        y = fluid.layers.leaky_relu(x, alpha=alpha)
357 358 359 360
        y = y * y
        z = y * y

        x_np = x.numpy()
361 362
        relu_x_np = np.maximum(x_np, alpha * x_np).astype('float32')
        relu_x_grad_np = ((x_np > 0) + (x_np < 0) * alpha).astype('float32')
363 364 365 366
        dy_expected = (relu_x_np * relu_x_grad_np * 2).astype('float32')
        dz_expected = (np.power(relu_x_np, 3) * relu_x_grad_np *
                       4).astype('float32')

367 368
        random_grad_y = random_var(y.shape, low=1, high=2)
        random_grad_z = random_var(z.shape, low=1, high=2)
369 370 371 372 373 374 375 376 377
        ones_grad_y = np.ones(y.shape).astype('float32')
        ones_grad_z = np.ones(z.shape).astype('float32')

        original_random_grad_y = random_grad_y.numpy()
        original_random_grad_z = random_grad_z.numpy()

        for grad_y in [random_grad_y]:
            for grad_z in [random_grad_z]:
                for create_graph in [False, True]:
378 379 380 381 382
                    dx_actual, = self.grad(outputs=[y, z],
                                           inputs=[x],
                                           grad_outputs=[grad_y, grad_z],
                                           create_graph=create_graph,
                                           retain_graph=True)
383 384 385 386 387 388 389

                    grad_y_np = ones_grad_y if grad_y is None else grad_y.numpy(
                    )
                    grad_z_np = ones_grad_z if grad_z is None else grad_z.numpy(
                    )

                    dx_expected = dy_expected * grad_y_np + dz_expected * grad_z_np
390 391 392
                    np.testing.assert_allclose(dx_actual.numpy(),
                                               dx_expected,
                                               rtol=1e-05)
393 394 395

                    if grad_y is not None:
                        self.assertTrue(grad_y.stop_gradient)
396 397
                        np.testing.assert_array_equal(grad_y.numpy(),
                                                      original_random_grad_y)
398 399 400

                    if grad_z is not None:
                        self.assertTrue(grad_z.stop_gradient)
401 402
                        np.testing.assert_array_equal(grad_z.numpy(),
                                                      original_random_grad_z)
403

404 405 406 407 408
    def test_none_one_initial_gradient(self):
        with _test_eager_guard():
            self.func_none_one_initial_gradient()
        self.func_none_one_initial_gradient()

409
    @dygraph_guard
410
    def func_example_with_gradient_accumulation_and_create_graph(self):
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=True)
        del w_mean

        self.assertFalse(dx_actual.stop_gradient)

        # Theoritical result based on math calculation
        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')
431
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
432

433 434
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward(retain_graph=True)
435

436 437 438 439
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 2 / float(numel))).astype('float32')
440
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
441 442 443

        for i in range(5):
            loss.backward(retain_graph=True)
444
            x_grad_actual = x.gradient()
445 446 447 448
            x_grad_expected = (
                i + 2) * (2.0 / float(numel) *
                          (x_np + dx_expected *
                           (x_np > 0) * 2 / float(numel))).astype('float32')
449 450 451
            np.testing.assert_allclose(x_grad_actual,
                                       x_grad_expected,
                                       rtol=1e-05)
452

453 454 455 456 457
    def test_example_with_gradient_accumulation_and_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_create_graph()
        self.func_example_with_gradient_accumulation_and_create_graph()

458
    @dygraph_guard
459
    def func_example_with_gradient_accumulation_and_no_grad_vars(self):
460 461 462 463 464 465 466 467 468 469 470 471 472
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y1 = fluid.layers.relu(x)
        y2 = fluid.layers.relu(x)
        z = y1 + y2
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y1, z, w

473 474 475 476
        dx_actual, = self.grad([w_mean], [x],
                               retain_graph=True,
                               create_graph=True,
                               no_grad_vars=[y2])
477 478 479 480 481 482

        self.assertFalse(y2.stop_gradient)
        self.assertFalse(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + y2.numpy()) *
                       (x_np > 0) * 2).astype('float32')
483
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
484

485 486
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
487

488 489 490 491
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 / float(numel) *
                           (x_np + dx_expected *
                            (x_np > 0) * 4 / float(numel))).astype('float32')
492
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
493 494 495 496 497

    def test_example_with_gradient_accumulation_and_no_grad_vars(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_no_grad_vars()
        self.func_example_with_gradient_accumulation_and_no_grad_vars()
498 499

    @dygraph_guard
500
    def func_example_with_gradient_accumulation_and_not_create_graph(self):
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        x = random_var(self.shape)
        x_np = x.numpy()
        numel = x_np.size
        x.stop_gradient = False

        y = fluid.layers.relu(x)
        z = y + 1
        w = z * z

        w_mean = fluid.layers.reduce_mean(w)
        del y, z, w

        dx_actual, = self.grad([w_mean], [x], create_graph=False)
        del w_mean

        self.assertTrue(dx_actual.stop_gradient)

        dx_expected = (1.0 / float(numel) * (np.maximum(x_np, 0) + 1) *
                       (x_np > 0) * 2).astype('float32')

521
        np.testing.assert_allclose(dx_actual.numpy(), dx_expected, rtol=1e-05)
522

523 524
        loss = fluid.layers.reduce_mean(dx_actual * dx_actual + x * x)
        loss.backward()
525

526 527
        x_grad_actual = x.gradient()
        x_grad_expected = (2.0 * x_np / float(numel)).astype('float32')
528
        np.testing.assert_allclose(x_grad_actual, x_grad_expected, rtol=1e-05)
529 530 531 532 533

    def test_example_with_gradient_accumulation_and_not_create_graph(self):
        with _test_eager_guard():
            self.func_example_with_gradient_accumulation_and_not_create_graph()
        self.func_example_with_gradient_accumulation_and_not_create_graph()
534 535 536


class TestDygraphDoubleGradSortGradient(TestDygraphDoubleGrad):
537

538 539 540 541 542
    def setUp(self):
        self.sort_sum_gradient = True
        self.shape = [5, 10]


H
hong 已提交
543
class TestDygraphDoubleGradVisitedUniq(TestCase):
544

545
    def func_compare(self):
546 547
        value = np.random.uniform(-0.5, 0.5, 100).reshape(10, 2,
                                                          5).astype("float32")
H
hong 已提交
548 549

        def model_f(input):
550
            linear = fluid.dygraph.Linear(5, 3, bias_attr=False)
H
hong 已提交
551 552
            for i in range(10):
                if i == 0:
553
                    out = linear(input)
H
hong 已提交
554
                else:
555
                    out = out + linear(input)
H
hong 已提交
556 557
            return out

558 559
        fluid.set_flags({'FLAGS_sort_sum_gradient': True})

H
hong 已提交
560
        with fluid.dygraph.guard():
C
cnn 已提交
561
            paddle.seed(123)
L
Leo Chen 已提交
562
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
563 564 565 566 567
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)

568 569 570 571 572
            dx = fluid.dygraph.grad(outputs=[out],
                                    inputs=[a],
                                    create_graph=False,
                                    only_inputs=True,
                                    allow_unused=False)
H
hong 已提交
573 574 575 576

            grad_1 = dx[0].numpy()

        with fluid.dygraph.guard():
C
cnn 已提交
577
            paddle.seed(123)
L
Leo Chen 已提交
578
            paddle.framework.random._manual_program_seed(123)
H
hong 已提交
579 580 581 582
            a = fluid.dygraph.to_variable(value)
            a.stop_gradient = False

            out = model_f(a)
583
            out.backward()
H
hong 已提交
584 585 586

            grad_2 = a.gradient()

587
        np.testing.assert_array_equal(grad_1, grad_2)
588

589 590 591 592 593
    def test_compare(self):
        with _test_eager_guard():
            self.func_compare()
        self.func_compare()

594 595

class TestRaiseNoDoubleGradOp(TestCase):
596

597 598 599 600
    def raise_no_grad_op(self):
        with fluid.dygraph.guard():
            x = fluid.layers.ones(shape=[2, 3, 2, 2], dtype='float32')
            x.stop_gradient = False
601
            y = paddle.fluid.layers.group_norm(x, groups=1)
602

603 604 605 606
            dx = fluid.dygraph.grad(outputs=[y],
                                    inputs=[x],
                                    create_graph=True,
                                    retain_graph=True)[0]
607 608 609 610 611

            loss = fluid.layers.reduce_mean(dx)
            loss.backward()

    def test_raise(self):
612
        self.assertRaises(RuntimeError, self.raise_no_grad_op)
H
hong 已提交
613 614


W
Weilong Wu 已提交
615
class TestDoubleGradResNet(TestCase):
616

W
Weilong Wu 已提交
617 618 619 620 621
    def setUp(self):
        paddle.seed(123)
        paddle.framework.random._manual_program_seed(123)
        self.data = np.random.rand(1, 3, 224, 224).astype(np.float32)

Z
Zeng Jinle 已提交
622
    @dygraph_guard
W
Weilong Wu 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    def test_resnet_resnet50(self):
        with _test_eager_guard():
            model = resnet50(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet50(pretrained=False)
        data = paddle.to_tensor(self.data)
Z
Zeng Jinle 已提交
640
        data.stop_gradient = False
W
Weilong Wu 已提交
641
        out = model(data)
Z
Zeng Jinle 已提交
642
        preds = paddle.argmax(out, axis=1)
643 644
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
Z
Zeng Jinle 已提交
645 646 647 648 649 650
        target = paddle.sum(out * label_onehot, axis=1)

        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))

651 652
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
653

W
Weilong Wu 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    @dygraph_guard
    def test_resnet_resnet101(self):
        with _test_eager_guard():
            model = resnet101(pretrained=False)
            egr_data = paddle.to_tensor(self.data)
            egr_data.stop_gradient = False
            egr_out = model(egr_data)
            egr_preds = paddle.argmax(egr_out, axis=1)
            egr_label_onehot = paddle.nn.functional.one_hot(
                paddle.to_tensor(egr_preds), num_classes=egr_out.shape[1])
            egr_target = paddle.sum(egr_out * egr_label_onehot, axis=1)

            egr_g = paddle.grad(outputs=egr_target, inputs=egr_out)[0]
            egr_g_numpy = egr_g.numpy()
            self.assertEqual(list(egr_g_numpy.shape), list(egr_out.shape))

        model = resnet101(pretrained=False)
        data = paddle.to_tensor(self.data)
        data.stop_gradient = False
        out = model(data)
        preds = paddle.argmax(out, axis=1)
675 676
        label_onehot = paddle.nn.functional.one_hot(paddle.to_tensor(preds),
                                                    num_classes=out.shape[1])
W
Weilong Wu 已提交
677
        target = paddle.sum(out * label_onehot, axis=1)
Z
Zeng Jinle 已提交
678

W
Weilong Wu 已提交
679 680 681
        g = paddle.grad(outputs=target, inputs=out)[0]
        g_numpy = g.numpy()
        self.assertEqual(list(g_numpy.shape), list(out.shape))
Z
Zeng Jinle 已提交
682

683 684
        np.testing.assert_array_equal(egr_out, out)
        np.testing.assert_array_equal(egr_g_numpy, g_numpy)
Z
Zeng Jinle 已提交
685 686


687
class TestDoubleGradBasics(TestCase):
688

689 690 691
    def test_matmul(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
692 693 694 695 696 697 698 699 700
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            grad_out = paddle.to_tensor(np.ones([3, 3]),
                                        stop_gradient=False,
                                        dtype='float32')
701 702

            out = paddle.matmul(x, y, False, False)
703 704 705
            new_x_g, new_y_g = paddle.grad([out], [x, y], [grad_out],
                                           retain_graph=True,
                                           create_graph=True)
706 707 708
            new_x_g.backward()

            out_ref = np.ones([3, 3]) * 12.0
709
            np.testing.assert_array_equal(out.numpy(), out_ref)
710 711 712

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
713 714
            np.testing.assert_array_equal(new_x_g.numpy(), new_x_g_ref)
            np.testing.assert_array_equal(new_y_g.numpy(), new_y_g_ref)
715 716

            x_grad_ref = np.ones([3, 3]) * 0.0
717
            np.testing.assert_array_equal(x.grad.numpy(), x_grad_ref)
718 719

            y_grad_ref = np.ones([3, 3]) * 3.0
720
            np.testing.assert_array_equal(y.grad.numpy(), y_grad_ref)
721 722

            grad_out_grad_ref = np.ones([3, 3]) * 6.0
723 724
            np.testing.assert_array_equal(grad_out.grad.numpy(),
                                          grad_out_grad_ref)
725 726


727 728
if __name__ == '__main__':
    unittest.main()